Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality te...Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality technology is now a promising alternative to the conventional driving simulations since it provides a more simple, secure and user-friendly environment for data collection. The driving simulator was used to assist novice drivers in learning how to drive in a very calm environment since the driving is not taking place on an actual road. This paper provides new insights regarding a driver’s behavior, techniques and adaptability within a driving simulation using virtual reality technology. The theoretical framework of this driving simulation has been designed using the Unity3D game engine (5.4.0f3 version) and programmed by the C# programming language. To make the driving simulation environment more realistic, the HTC Vive Virtual reality headset, powered by Steamvr, was used. 10 volunteers ranging from ages 19 - 37 participated in the virtual reality driving experiment. Matlab R2016b was used to analyze the data obtained from experiment. This research results are crucial for training drivers and obtaining insight on a driver’s behavior and characteristics. We have gathered diverse results for 10 drivers with different characteristics to be discussed in this study. Driving simulations are not easy to use for some users due to motion sickness, difficulties in adopting to a virtual environment. Furthermore, results of this study clearly show the performance of drivers is closely associated with individual’s behavior and adaptability to the driving simulator. Based on our findings, it can be said that with a VR-HMD (Virtual Reality-Head Mounted Display) Driving Simulator enables us to evaluate a driver’s “performance error”, “recognition errors” and “decision error”. All of which will allow researchers and further studies to potentially establish a method to increase driver safety or alleviate “driving errors”.展开更多
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ...Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.展开更多
This article provides new insights regarding driver behavior, techniques and adaptability. This study has been done because: 1) driving a vehicle is critical and one of the most common daily tasks;2) simulators are us...This article provides new insights regarding driver behavior, techniques and adaptability. This study has been done because: 1) driving a vehicle is critical and one of the most common daily tasks;2) simulators are used for the purpose of training and researching driver behavior and characteristics;3) the article addresses driver experience by involving new virtual reality technologies. A simulator has been used to assist novice drivers to learn how to drive in a very safe environment, and researching and collecting data for researchers has become easier due to this secure and user-friendly environment. The theoretical framework of this driving simulation has been designed by using the Unity3D game engine (5.4.f3 version) and was programmed with the C# programming language. To make the driving environment more realistic we, in addition, utilized the HTC Vive Virtual reality headset which is powered by Steamvr. We used Unity Game Engine to design our scenarios and maps because by doing this we are able to be more flexible with designing. In this study, we asked 10 people ranging from ages 19 - 37 to participate in this experiment. Four Japanese divers and six non-Japanese drivers engaged in this study, some of which do not have a driver’s license in Japan. A few Japanese drivers have a license and car, while others have a license but no car. In order to analyze the results of this experiment we are used MatlabR2016b to analyze the gathered data. The result of this research indicates that individual’s behavior and characteristics such as controlling the speed, remaining calm and relaxed when driving, driving at appropriate speeds depending on changes in road structures and etc. can affect their driving performance.展开更多
BACKGROUND Virtual reality(VR)has emerged as an innovative technology in endoscopy training,providing a simulated environment that closely resembles real-life scenarios and offering trainees a valuable platform to acq...BACKGROUND Virtual reality(VR)has emerged as an innovative technology in endoscopy training,providing a simulated environment that closely resembles real-life scenarios and offering trainees a valuable platform to acquire and enhance their endoscopic skills.This systematic review will critically evaluate the effectiveness and feasibility of VR-based training compared to traditional methods.AIM To evaluate the effectiveness and feasibility of VR-based training compared to traditional methods.By examining the current state of the field,this review seeks to identify gaps,challenges,and opportunities for further research and implementation of VR in endoscopic training.METHODS The study is a systematic review,following the guidelines for reporting systematic reviews set out by the PRISMA statement.A comprehensive search command was designed and implemented and run in September 2023 to identify relevant studies available,from electronic databases such as PubMed,Scopus,Cochrane,and Google Scholar.The results were systematically reviewed.RESULTS Sixteen articles were included in the final analysis.The total number of participants was 523.Five studies focused on both upper endoscopy and colonoscopy training,two on upper endoscopy training only,eight on colonoscopy training only,and one on sigmoidoscopy training only.Gastrointestinal Mentor virtual endoscopy simulator was commonly used.Fifteen reported positive results,indicating that VR-based training was feasible and acceptable for endoscopy learners.VR technology helped the trainees enhance their skills in manipulating the endoscope,reducing the procedure time or increasing the technical accuracy,in VR scenarios and real patients.Some studies show that the patient discomfort level decreased significantly.However,some studies show there were no significant differences in patient discomfort and pain scores between VR group and other groups.CONCLUSION VR training is effective for endoscopy training.There are several well-designed randomized controlled trials with large sample sizes,proving the potential of this innovative tool.Thus,VR should be more widely adopted in endoscopy training.Furthermore,combining VR training with conventional methods could be a promising approach that should be implemented in training.展开更多
Background Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia that can cause severe heart problems.Catheter ablation is one of the most ideal procedures for the treatment of AF.Physicians qualified...Background Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia that can cause severe heart problems.Catheter ablation is one of the most ideal procedures for the treatment of AF.Physicians qualified to perform this procedure need to be highly skilled in manipulating the relevant surgical devices.This study proposes an interactive surgical simulator with high fidelity to facilitate efficient training and low-cost medical education.Methods We used a shared centerline model to simulate the interaction between multiple surgical devices.An improved adaptive deviation-feedback approach is proposed to accelerate the convergence of each iteration.The periodical beating of the human heart was also simulated in real time using the position-based dynamics(PBD)framework to achieve higher fidelity.We then present a novel method for handling the interaction between the devices and the beating heart mesh model.Experiments were conducted in a homemade simulator prototype to evaluate the robustness,performance,and flexibility of the proposed method.Preliminary evaluation of the simulator was performed by medical students,residents,and surgeons.Results The interaction between surgical devices,static vascular meshes,and beating heart mesh was stably simulated in a frame rate suitable for interaction.Conclusion Our simulator is capable of simulating the procedure of catheter ablation with high fidelity and provides immersive visual experiences and haptic feedback.展开更多
Objective To assess the face and construct validity of a full procedural transurethral prostate resection simulator ( TURPSimTM ) in training of transurethral resection of prostate. Methods Ten experienced and thirtee...Objective To assess the face and construct validity of a full procedural transurethral prostate resection simulator ( TURPSimTM ) in training of transurethral resection of prostate. Methods Ten experienced and thirteen inexperienced urologists ( TURP experience ≥ 30 and展开更多
A design strategy for a research platform of a telepresence telerobot system based on virtual reality technology is put forward. The design frame of the system is described, and its important core techniques are descr...A design strategy for a research platform of a telepresence telerobot system based on virtual reality technology is put forward. The design frame of the system is described, and its important core techniques are described. An octrees data structure is utilized to build kinematic and dynamic modeling of the virtual simulation environment, Delphi+OpenGL+3DS MAX are adopted to carry through the virtual modeling and visible simulation exploitation of the slave-robot and its environment. Photo-correction is adopted to correct positioning deviation of the virtual geometric model and modeling errors. The cost of software and hardware equipment for the research platform realized is low. The master/slave robot (manipulator) system and all software in the system were designed and manufactured by our research group. The performance of the system has reached the level required for research. An indispensable experiment base is provided for the research of a telepresence telerobot system based on virtual reality technology.展开更多
The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simul...The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simulation process of grinding wheels and ground surface roughness is discussed, and the computation program system of numerical simulation is compiled with Visual C++ programming language. At the same time, the three-dimensional simulation models of grinding wheels and ground surface roughness are made with OpenGL tool. The choice of grinding wheels, the forecast of ground surface quality and some simulation results can be realized by interactively inputting grinding parameters. The paper applies virtual reality technology to grinding process,makes the model of virtual grinding wheel and simulates the grinding process. The roughness of ground surface is showed in three-dimensional images, and therefore the grinding technology is studied. Computer simulation can not only be used as a shortcut to analyze and research the grinding process, but also increase the research scope and content. The virtual reality technology used in the paper is an advanced visualized simulation with interaction. The surface roughness Ra on simulated ground workpiece can be calculated by the arithmetic average of contour warp absolute value in sampling length of simulated ground workpiece. The parameters of virtual wheel and simulated grinding process can be changed by interaction input, so the simulated results in the desired grinding condition are gained. The effect of each parameter to ground surface can be analyzed by comparing the grinding results in different condition.展开更多
Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making i...Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.展开更多
In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,...In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,visualization of massive and multidimensional marine data,and imitation of marine lives.VV-Ocean is composed of five modules,i.e.memory management module,resources management module,scene management module,rendering process management module and interaction management module.There are three core functions in VV-Ocean:reconstructing vivid virtual ocean scenes,visualizing real data dynamically in real time,imitating and simulating marine lives intuitively.Based on VV-Ocean,we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface.Environment factors such as ocean current and wind field have been considered in this simulation.On this platform oil spilling process can be abstracted as movements of abundant oil particles.The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering.VV-Ocean can be widely used in ocean applications such as demonstrating marine operations,facilitating maritime communications,developing ocean games,reducing marine hazards,forecasting the weather over oceans,serving marine tourism,and so on.Finally,further technological improvements of VV-Ocean are discussed.展开更多
Long-time driving and monotonous visual environment increase the safety risk of driving in an extra-long tunnel. Driving fatigue can be effectively relieved by setting the visual fatigue relief zone in the tunnel. How...Long-time driving and monotonous visual environment increase the safety risk of driving in an extra-long tunnel. Driving fatigue can be effectively relieved by setting the visual fatigue relief zone in the tunnel. However, the setting form of visual fatigue relief zone, such as its length and location, is difficult to be designed and quantified. By integrating virtual reality(VR) apparatus with wearable electroencephalogram(EEG)-based devices, a hybrid method was proposed in this study to assist analyzers to formulate the layout of visual fatigue relief zone in the extra-long tunnel.The virtual environment of this study was based on an 11.5 km extra-long tunnel located in Yunnan Province in China.The results indicated that the use of natural landscape decoration inside the tunnel could improve driving fatigue with the growth rate of attention of the driver increased by more than 20%. The accumulation of driving fatigue had a negative effect on the fatigue relief. The results demonstrated that the optimal location of the fatigue relief zone was at the place where driving fatigue had just occurred rather than at the place where a certain amount of driving fatigue had accumulated.展开更多
Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the ...Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the diagnostic accuracy,and decision-making.Hepatobiliary procedures are technically complex and the use of AI in perioperative management can improve patient outcomes as discussed below.Three-dimensional(3D)reconstruction of images obtained via ultrasound,computed tomography scan or magnetic resonance imaging,can help surgeons better visualize the surgical sites with added depth perception.Preoperative 3D planning is associated with lesser operative time and intraoperative complications.Also,a more accurate assessment is noted,which leads to fewer operative complications.Images can be converted into physical models with 3D printing technology,which can be of educational value to students and trainees.3D images can be combined to provide 3D visualization,which is used for preoperative navigation,allowing for more precise localization of tumors and vessels.Nevertheless,AI enables surgeons to provide better,personalized care for each patient.展开更多
US Vice President Al Gore's vision of Digital Earth applies us with prospects for brand-new ways of solving problems the earth is facing such as seismic disaster. ms paper first briefly introduces the concept of ...US Vice President Al Gore's vision of Digital Earth applies us with prospects for brand-new ways of solving problems the earth is facing such as seismic disaster. ms paper first briefly introduces the concept of Digital Earth. Then in the context of Digital Earth. the Origin, concept and application of Virtual Reality technology are reviewed. After that we present in detail our preliminary case study--CVR-USD (Computer Virtual Reality for Urban Seismic Disaster Simulation) System which aims to simulate and manage seismic disaster through integrating RS, GIS and VR technologies. For this system, we've built USD subsystem, developed SMVR software to implement CVR. and also developed a Spatial Dare Analysis Package to handle spatial data related to earthquake disaster.展开更多
Objective:Training young physicians in gastrointestinal endoscopy through virtual reality(VR)simulators has become popular.It is important to evaluate the benefits and usefulness of this technology for teaching endosc...Objective:Training young physicians in gastrointestinal endoscopy through virtual reality(VR)simulators has become popular.It is important to evaluate the benefits and usefulness of this technology for teaching endoscopic skills.The objective of this literature review is to understand the benefits of VR technology through quantitative and qualitative examination of learning outcomes.Methods:A literature search of 7 databases was conducted.Studies which compared the effects of learning through VR simulation and another method of learning were included.In addition,studies were included if they evaluated learning outcomes on clinical patients.Participants could be medical residents,fellows,physicians,or nurses.Common outcomes measured across studies included subjective overall performance scores,total procedure times,rate of successful procedure completion,error rates,patient pain or discomfort,and measures of independence.Results:A total of 22 studies were included.Overall,VR simulation training was seen to be comparable or significantly better than clinical training,no training,other types of simulation,and another form of VR training.Many authors reported increasing patient safety,reducing stress and time constraints,and shortening the learning curve as advantages of VR simulation training.However,this form of training is also expensive and may result in the learning of bad habits.Conclusion:VR simulation technology can be a valuable form of educating endoscopy novices if properly supervised during training,and if there is also integration of clinical training.展开更多
The platform with bucket foundations can penetrate and migrate by underpressure/positive pressure technique caused by pumping water out/in the bucket. However, the construction process of bucket foundations cannot be ...The platform with bucket foundations can penetrate and migrate by underpressure/positive pressure technique caused by pumping water out/in the bucket. However, the construction process of bucket foundations cannot be clearly observed and effectively controlled due to the special nature of sea environment. By using an advanced simulation development tool of Multigen Creator, the visual construction simulation program for the platform with bucket foundations was developed to set up the virtual reality system with interaction control and observation in every view angle based on the secondary development technology of Vega platform. The application results show that the method is feasible and effective by simulating the whole construction process for the platform with four bucket foundations.展开更多
Virtual reality(VR)technologies have rapidly developed in the past few years.The most common application of the technology,apart from gaming,is for educational purposes.In the field of healthcare,VR technologies have ...Virtual reality(VR)technologies have rapidly developed in the past few years.The most common application of the technology,apart from gaming,is for educational purposes.In the field of healthcare,VR technologies have been applied in several areas.Among them is surgical education.With the use of VR,surgical pathways along with the training of surgical skills can be explored safely,in a cost-effective manner.The aim of this mini-review was to explore the use of VR in surgical education and in the 3D reconstruction of internal organs and viable surgical pathways.Finally,based on the outcomes of the included studies,an ecosystem for the implementation of surgical training was proposed.展开更多
The proliferation of Virtual Reality-based tools has led to its increased usage in the field of education over the last decades owing to its increasingly realistic simulation and greater control over the 3D simulated ...The proliferation of Virtual Reality-based tools has led to its increased usage in the field of education over the last decades owing to its increasingly realistic simulation and greater control over the 3D simulated environment. The unique features of Virtual Reality (VR) simulation can provide learners with a hazard-free simulated environment allowing limitless failure attempts. Yet, good quality research to verify the effectiveness of VR simulation in training students of the health profession is still lacking. This literature review focuses on the effectiveness of virtual reality-based simulation in enhancing health profession students’ empathetic attitude relating to mental illness. Four databases were searched from January 1, 2007 to December 31, 2018. Of 1034 articles identified eligible in the databases, a total of 6 articles have met the criteria for inclusion in this review. Findings suggested that there is a clear relationship between VR simulation and an improvement on users’ empathy, attitudes, and knowledge relating to mental Illness. With the unique characteristic of experiential learning of VR simulation, there is a potential development of the VR simulation on empathy and attitude in healthcare education. Also, VR stimulation is found having a larger impact on the users’ empathy of users with a healthcare background compared to those without. Future studies should include more in-depth examination on the effect on the specificity of empathy and attitude of people with healthcare background, and in teaching a wider range of mental illnesses such as depression and general anxiety disorder.展开更多
文摘Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality technology is now a promising alternative to the conventional driving simulations since it provides a more simple, secure and user-friendly environment for data collection. The driving simulator was used to assist novice drivers in learning how to drive in a very calm environment since the driving is not taking place on an actual road. This paper provides new insights regarding a driver’s behavior, techniques and adaptability within a driving simulation using virtual reality technology. The theoretical framework of this driving simulation has been designed using the Unity3D game engine (5.4.0f3 version) and programmed by the C# programming language. To make the driving simulation environment more realistic, the HTC Vive Virtual reality headset, powered by Steamvr, was used. 10 volunteers ranging from ages 19 - 37 participated in the virtual reality driving experiment. Matlab R2016b was used to analyze the data obtained from experiment. This research results are crucial for training drivers and obtaining insight on a driver’s behavior and characteristics. We have gathered diverse results for 10 drivers with different characteristics to be discussed in this study. Driving simulations are not easy to use for some users due to motion sickness, difficulties in adopting to a virtual environment. Furthermore, results of this study clearly show the performance of drivers is closely associated with individual’s behavior and adaptability to the driving simulator. Based on our findings, it can be said that with a VR-HMD (Virtual Reality-Head Mounted Display) Driving Simulator enables us to evaluate a driver’s “performance error”, “recognition errors” and “decision error”. All of which will allow researchers and further studies to potentially establish a method to increase driver safety or alleviate “driving errors”.
基金National Innovation and Entrepreneurship Program for College Students(202218213001)Science and Technology Innovation Strategy of Guangdong Province(Science and Technology Innovation Cultivation of University Students 2020329182130C000002).
文摘Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.
文摘This article provides new insights regarding driver behavior, techniques and adaptability. This study has been done because: 1) driving a vehicle is critical and one of the most common daily tasks;2) simulators are used for the purpose of training and researching driver behavior and characteristics;3) the article addresses driver experience by involving new virtual reality technologies. A simulator has been used to assist novice drivers to learn how to drive in a very safe environment, and researching and collecting data for researchers has become easier due to this secure and user-friendly environment. The theoretical framework of this driving simulation has been designed by using the Unity3D game engine (5.4.f3 version) and was programmed with the C# programming language. To make the driving environment more realistic we, in addition, utilized the HTC Vive Virtual reality headset which is powered by Steamvr. We used Unity Game Engine to design our scenarios and maps because by doing this we are able to be more flexible with designing. In this study, we asked 10 people ranging from ages 19 - 37 to participate in this experiment. Four Japanese divers and six non-Japanese drivers engaged in this study, some of which do not have a driver’s license in Japan. A few Japanese drivers have a license and car, while others have a license but no car. In order to analyze the results of this experiment we are used MatlabR2016b to analyze the gathered data. The result of this research indicates that individual’s behavior and characteristics such as controlling the speed, remaining calm and relaxed when driving, driving at appropriate speeds depending on changes in road structures and etc. can affect their driving performance.
文摘BACKGROUND Virtual reality(VR)has emerged as an innovative technology in endoscopy training,providing a simulated environment that closely resembles real-life scenarios and offering trainees a valuable platform to acquire and enhance their endoscopic skills.This systematic review will critically evaluate the effectiveness and feasibility of VR-based training compared to traditional methods.AIM To evaluate the effectiveness and feasibility of VR-based training compared to traditional methods.By examining the current state of the field,this review seeks to identify gaps,challenges,and opportunities for further research and implementation of VR in endoscopic training.METHODS The study is a systematic review,following the guidelines for reporting systematic reviews set out by the PRISMA statement.A comprehensive search command was designed and implemented and run in September 2023 to identify relevant studies available,from electronic databases such as PubMed,Scopus,Cochrane,and Google Scholar.The results were systematically reviewed.RESULTS Sixteen articles were included in the final analysis.The total number of participants was 523.Five studies focused on both upper endoscopy and colonoscopy training,two on upper endoscopy training only,eight on colonoscopy training only,and one on sigmoidoscopy training only.Gastrointestinal Mentor virtual endoscopy simulator was commonly used.Fifteen reported positive results,indicating that VR-based training was feasible and acceptable for endoscopy learners.VR technology helped the trainees enhance their skills in manipulating the endoscope,reducing the procedure time or increasing the technical accuracy,in VR scenarios and real patients.Some studies show that the patient discomfort level decreased significantly.However,some studies show there were no significant differences in patient discomfort and pain scores between VR group and other groups.CONCLUSION VR training is effective for endoscopy training.There are several well-designed randomized controlled trials with large sample sizes,proving the potential of this innovative tool.Thus,VR should be more widely adopted in endoscopy training.Furthermore,combining VR training with conventional methods could be a promising approach that should be implemented in training.
基金the National Natural Science Foundation of China(61672510)the Shenzhen Basic Research Program(JCYJ20180507182441903).
文摘Background Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia that can cause severe heart problems.Catheter ablation is one of the most ideal procedures for the treatment of AF.Physicians qualified to perform this procedure need to be highly skilled in manipulating the relevant surgical devices.This study proposes an interactive surgical simulator with high fidelity to facilitate efficient training and low-cost medical education.Methods We used a shared centerline model to simulate the interaction between multiple surgical devices.An improved adaptive deviation-feedback approach is proposed to accelerate the convergence of each iteration.The periodical beating of the human heart was also simulated in real time using the position-based dynamics(PBD)framework to achieve higher fidelity.We then present a novel method for handling the interaction between the devices and the beating heart mesh model.Experiments were conducted in a homemade simulator prototype to evaluate the robustness,performance,and flexibility of the proposed method.Preliminary evaluation of the simulator was performed by medical students,residents,and surgeons.Results The interaction between surgical devices,static vascular meshes,and beating heart mesh was stably simulated in a frame rate suitable for interaction.Conclusion Our simulator is capable of simulating the procedure of catheter ablation with high fidelity and provides immersive visual experiences and haptic feedback.
文摘Objective To assess the face and construct validity of a full procedural transurethral prostate resection simulator ( TURPSimTM ) in training of transurethral resection of prostate. Methods Ten experienced and thirteen inexperienced urologists ( TURP experience ≥ 30 and
文摘A design strategy for a research platform of a telepresence telerobot system based on virtual reality technology is put forward. The design frame of the system is described, and its important core techniques are described. An octrees data structure is utilized to build kinematic and dynamic modeling of the virtual simulation environment, Delphi+OpenGL+3DS MAX are adopted to carry through the virtual modeling and visible simulation exploitation of the slave-robot and its environment. Photo-correction is adopted to correct positioning deviation of the virtual geometric model and modeling errors. The cost of software and hardware equipment for the research platform realized is low. The master/slave robot (manipulator) system and all software in the system were designed and manufactured by our research group. The performance of the system has reached the level required for research. An indispensable experiment base is provided for the research of a telepresence telerobot system based on virtual reality technology.
文摘The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simulation process of grinding wheels and ground surface roughness is discussed, and the computation program system of numerical simulation is compiled with Visual C++ programming language. At the same time, the three-dimensional simulation models of grinding wheels and ground surface roughness are made with OpenGL tool. The choice of grinding wheels, the forecast of ground surface quality and some simulation results can be realized by interactively inputting grinding parameters. The paper applies virtual reality technology to grinding process,makes the model of virtual grinding wheel and simulates the grinding process. The roughness of ground surface is showed in three-dimensional images, and therefore the grinding technology is studied. Computer simulation can not only be used as a shortcut to analyze and research the grinding process, but also increase the research scope and content. The virtual reality technology used in the paper is an advanced visualized simulation with interaction. The surface roughness Ra on simulated ground workpiece can be calculated by the arithmetic average of contour warp absolute value in sampling length of simulated ground workpiece. The parameters of virtual wheel and simulated grinding process can be changed by interaction input, so the simulated results in the desired grinding condition are gained. The effect of each parameter to ground surface can be analyzed by comparing the grinding results in different condition.
基金supported by National Basic Research Program (973 Program,No.2004CB719402)National Natural Science Foundation of China (No.60736019)Natural Science Foundation of Zhejiang Province, China(No.Y105430).
文摘Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.
基金supported by the Global Change Research Program of China under Project 2012CB955603the Natural Science Foundation of China under Project 41076115+2 种基金the National Basic Research Program of China under Project 2009CB723903the Public Science and Technology Research Funds of the Ocean under Project 201005019the National High-Tech Research and Development Program of China under Project 2008AA121701
文摘In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,visualization of massive and multidimensional marine data,and imitation of marine lives.VV-Ocean is composed of five modules,i.e.memory management module,resources management module,scene management module,rendering process management module and interaction management module.There are three core functions in VV-Ocean:reconstructing vivid virtual ocean scenes,visualizing real data dynamically in real time,imitating and simulating marine lives intuitively.Based on VV-Ocean,we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface.Environment factors such as ocean current and wind field have been considered in this simulation.On this platform oil spilling process can be abstracted as movements of abundant oil particles.The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering.VV-Ocean can be widely used in ocean applications such as demonstrating marine operations,facilitating maritime communications,developing ocean games,reducing marine hazards,forecasting the weather over oceans,serving marine tourism,and so on.Finally,further technological improvements of VV-Ocean are discussed.
基金Project(2018YFB2101000) supported by the National Key R&D Program of ChinaProject(20YF1451400) supported by Shanghai Sailing Program,ChinaProject(SLDRCE19-A-14) supported by the Research Fund of State Key Laboratory for Disaster Reduction in Civil Engineering,China。
文摘Long-time driving and monotonous visual environment increase the safety risk of driving in an extra-long tunnel. Driving fatigue can be effectively relieved by setting the visual fatigue relief zone in the tunnel. However, the setting form of visual fatigue relief zone, such as its length and location, is difficult to be designed and quantified. By integrating virtual reality(VR) apparatus with wearable electroencephalogram(EEG)-based devices, a hybrid method was proposed in this study to assist analyzers to formulate the layout of visual fatigue relief zone in the extra-long tunnel.The virtual environment of this study was based on an 11.5 km extra-long tunnel located in Yunnan Province in China.The results indicated that the use of natural landscape decoration inside the tunnel could improve driving fatigue with the growth rate of attention of the driver increased by more than 20%. The accumulation of driving fatigue had a negative effect on the fatigue relief. The results demonstrated that the optimal location of the fatigue relief zone was at the place where driving fatigue had just occurred rather than at the place where a certain amount of driving fatigue had accumulated.
文摘Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the diagnostic accuracy,and decision-making.Hepatobiliary procedures are technically complex and the use of AI in perioperative management can improve patient outcomes as discussed below.Three-dimensional(3D)reconstruction of images obtained via ultrasound,computed tomography scan or magnetic resonance imaging,can help surgeons better visualize the surgical sites with added depth perception.Preoperative 3D planning is associated with lesser operative time and intraoperative complications.Also,a more accurate assessment is noted,which leads to fewer operative complications.Images can be converted into physical models with 3D printing technology,which can be of educational value to students and trainees.3D images can be combined to provide 3D visualization,which is used for preoperative navigation,allowing for more precise localization of tumors and vessels.Nevertheless,AI enables surgeons to provide better,personalized care for each patient.
基金National Natural Science Foundation of China (NSFC)!project No. 69896250 Basic Research Project of CAS !project No. KJ951-B1
文摘US Vice President Al Gore's vision of Digital Earth applies us with prospects for brand-new ways of solving problems the earth is facing such as seismic disaster. ms paper first briefly introduces the concept of Digital Earth. Then in the context of Digital Earth. the Origin, concept and application of Virtual Reality technology are reviewed. After that we present in detail our preliminary case study--CVR-USD (Computer Virtual Reality for Urban Seismic Disaster Simulation) System which aims to simulate and manage seismic disaster through integrating RS, GIS and VR technologies. For this system, we've built USD subsystem, developed SMVR software to implement CVR. and also developed a Spatial Dare Analysis Package to handle spatial data related to earthquake disaster.
文摘Objective:Training young physicians in gastrointestinal endoscopy through virtual reality(VR)simulators has become popular.It is important to evaluate the benefits and usefulness of this technology for teaching endoscopic skills.The objective of this literature review is to understand the benefits of VR technology through quantitative and qualitative examination of learning outcomes.Methods:A literature search of 7 databases was conducted.Studies which compared the effects of learning through VR simulation and another method of learning were included.In addition,studies were included if they evaluated learning outcomes on clinical patients.Participants could be medical residents,fellows,physicians,or nurses.Common outcomes measured across studies included subjective overall performance scores,total procedure times,rate of successful procedure completion,error rates,patient pain or discomfort,and measures of independence.Results:A total of 22 studies were included.Overall,VR simulation training was seen to be comparable or significantly better than clinical training,no training,other types of simulation,and another form of VR training.Many authors reported increasing patient safety,reducing stress and time constraints,and shortening the learning curve as advantages of VR simulation training.However,this form of training is also expensive and may result in the learning of bad habits.Conclusion:VR simulation technology can be a valuable form of educating endoscopy novices if properly supervised during training,and if there is also integration of clinical training.
基金Supported by National Natural Science Foundation of China(No.51109160)National High Technology Research and Development Program of China("863"Program,No.2012AA051705)+1 种基金International Science and Technology Cooperation Program of China(No.2012DFA70490)Tianjin Natural Science Foundation(No.13JCQNJC06900)
文摘The platform with bucket foundations can penetrate and migrate by underpressure/positive pressure technique caused by pumping water out/in the bucket. However, the construction process of bucket foundations cannot be clearly observed and effectively controlled due to the special nature of sea environment. By using an advanced simulation development tool of Multigen Creator, the visual construction simulation program for the platform with bucket foundations was developed to set up the virtual reality system with interaction control and observation in every view angle based on the secondary development technology of Vega platform. The application results show that the method is feasible and effective by simulating the whole construction process for the platform with four bucket foundations.
基金Supported by Hellenic Foundation for Research and Innovation(HFRI)Under The 3rd Call for HFRI PhD Fellowships,No.6232“Evaluating Novel Tangible and Intangible Co-creative Experiential Medical Education”(ENTICE)Knowledge Alliances for Higher Education ProjectCo-funded By The Erasmus+Program of The European Union,No.612444-EPP-1-2019-1-CY-EPPKA2-KA.
文摘Virtual reality(VR)technologies have rapidly developed in the past few years.The most common application of the technology,apart from gaming,is for educational purposes.In the field of healthcare,VR technologies have been applied in several areas.Among them is surgical education.With the use of VR,surgical pathways along with the training of surgical skills can be explored safely,in a cost-effective manner.The aim of this mini-review was to explore the use of VR in surgical education and in the 3D reconstruction of internal organs and viable surgical pathways.Finally,based on the outcomes of the included studies,an ecosystem for the implementation of surgical training was proposed.
文摘The proliferation of Virtual Reality-based tools has led to its increased usage in the field of education over the last decades owing to its increasingly realistic simulation and greater control over the 3D simulated environment. The unique features of Virtual Reality (VR) simulation can provide learners with a hazard-free simulated environment allowing limitless failure attempts. Yet, good quality research to verify the effectiveness of VR simulation in training students of the health profession is still lacking. This literature review focuses on the effectiveness of virtual reality-based simulation in enhancing health profession students’ empathetic attitude relating to mental illness. Four databases were searched from January 1, 2007 to December 31, 2018. Of 1034 articles identified eligible in the databases, a total of 6 articles have met the criteria for inclusion in this review. Findings suggested that there is a clear relationship between VR simulation and an improvement on users’ empathy, attitudes, and knowledge relating to mental Illness. With the unique characteristic of experiential learning of VR simulation, there is a potential development of the VR simulation on empathy and attitude in healthcare education. Also, VR stimulation is found having a larger impact on the users’ empathy of users with a healthcare background compared to those without. Future studies should include more in-depth examination on the effect on the specificity of empathy and attitude of people with healthcare background, and in teaching a wider range of mental illnesses such as depression and general anxiety disorder.