The proton radioactivity half-lives are investigated theoretically within a hybrid method.The potential barriers preventing the emission of protons are determined in the quasimolecular shape path within a generalized ...The proton radioactivity half-lives are investigated theoretically within a hybrid method.The potential barriers preventing the emission of protons are determined in the quasimolecular shape path within a generalized liquid drop model(GLDM). The penetrability is calculated with the WentzelKramers-Brillouin(WKB) approximation. The spectroscopic factor has been taken into account in halflife calculation, which is obtained by employing the relativistic mean field(RMF) theory combined with the Bardeen-Cooper-Schrieffer(BCS) method. The half-lives within the present hybrid method reproduced the experimental data very well. Some predictions for proton radioactivity are made for future experiments.展开更多
基金National Natural Science Foundation of China(11175074,11475050,11265013)Knowledge Innovation Project of Chinese Academy of Sciences(KJCX2-EW-N02)
文摘The proton radioactivity half-lives are investigated theoretically within a hybrid method.The potential barriers preventing the emission of protons are determined in the quasimolecular shape path within a generalized liquid drop model(GLDM). The penetrability is calculated with the WentzelKramers-Brillouin(WKB) approximation. The spectroscopic factor has been taken into account in halflife calculation, which is obtained by employing the relativistic mean field(RMF) theory combined with the Bardeen-Cooper-Schrieffer(BCS) method. The half-lives within the present hybrid method reproduced the experimental data very well. Some predictions for proton radioactivity are made for future experiments.