Massive open online courses(MOOCs)have become a way of online learning across the world in the past few years.However,the extremely high dropout rate has brought many challenges to the development of online learning.M...Massive open online courses(MOOCs)have become a way of online learning across the world in the past few years.However,the extremely high dropout rate has brought many challenges to the development of online learning.Most of the current methods have low accuracy and poor generalization ability when dealing with high-dimensional dropout features.They focus on the analysis of the learning score and check result of online course,but neglect the phased student behaviors.Besides,the status of student participation at a given moment is necessarily impacted by the prior status of learning.To address these issues,this paper has proposed an ensemble learning model for early dropout prediction(ELM-EDP)that integrates attention-based document representation as a vector(A-Doc2vec),feature learning of course difficulty,and weighted soft voting ensemble with heterogeneous classifiers(WSV-HC).First,A-Doc2vec is proposed to learn sequence features of student behaviors of watching lecture videos and completing course assignments.It also captures the relationship between courses and videos.Then,a feature learning method is proposed to reduce the interference caused by the differences of course difficulty on the dropout prediction.Finally,WSV-HC is proposed to highlight the benefits of integration strategies of boosting and bagging.Experiments on the MOOCCube2020 dataset show that the high accuracy of our ELM-EDP has better results on Accuracy,Precision,Recall,and F1.展开更多
Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout predictio...Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout prediction aims to predict whether a learner will exhibit learning behaviors during several consecutive days in the future. Therefore, the information related to the learning behaviors of a learner in several consecutive days should be considered. After in-depth analysis of the learning behavior patterns of the MOOC learners, this study reports that learners often exhibit similar learning behaviors on several consecutive days, i.e., the learning status of a learner for the subsequent day is likely to be similar to that for the previous day. Based on this characteristic of MOOC learning,this study proposes a new simple feature matrix for keeping information related to the local correlation of learning behaviors and a new Convolutional Neural Network(CNN) model for predicting the dropout. Extensive experimental validations illustrate that the local correlation of learning behaviors should not be neglected. The proposed CNN model considers this characteristic and improves the dropout prediction accuracy. Furthermore, the proposed model can be used to predict dropout temporally and early when sufficient data are collected.展开更多
This paper addresses a channel scheduling problem for group of dynamically decoupled nonlinear subsystems with actuators connected through digital communication channels and controlled by a centralized controller. Due...This paper addresses a channel scheduling problem for group of dynamically decoupled nonlinear subsystems with actuators connected through digital communication channels and controlled by a centralized controller. Due to the limited communication capacity, only one channel can be activated and hence there is only one pair of sensor and actuator can communicate with the controller at each time instant. In addition, the communication channels are not reliable so Markovian packed dropout is introduced. A predictive control framework is adopted for controller/scheduler co-design to alleviate the performance loss caused by the limited communication capacity. Instead of sending a single control value, the controller sends a sequence of predicted control values to a selected actuator so that there are control input candidates which can be fed to the subsystem when the actuator does not communicate with the controller. A stochastic algorithm is proposed to schedule the usage of the communication medium and sufficient conditions on stochastic stability are given under some mild assumptions.展开更多
Stability of a networked predictive control system subject to network-induced delay and data dropout is investigated in this study. By modeling the closed-loop system as a switched system with an upper-triangular stru...Stability of a networked predictive control system subject to network-induced delay and data dropout is investigated in this study. By modeling the closed-loop system as a switched system with an upper-triangular structure, a necessary and sufficient stability criterion is developed. From the criterion, it also can be seen that separation principle holds for networked predictive control systems. A numerical example is provided to confirm the validity and effectiveness of the obtained results.展开更多
基金supported by the National Natural Science Foundation of China(No.61772231)the Natural Science Foundation of Shandong Province(No.ZR2022LZH016&No.ZR2017MF025)+3 种基金the Project of Shandong Provincial Social Science Program(No.18CHLJ39)the Shandong Provincial Key R&D Program of China(No.2021CXGC010103)the Shandong Provincial Teaching Research Project of Graduate Education(No.SDYAL2022102&No.SDYJG21034)the Teaching Research Project of University of Jinan(No.JZ2212)。
文摘Massive open online courses(MOOCs)have become a way of online learning across the world in the past few years.However,the extremely high dropout rate has brought many challenges to the development of online learning.Most of the current methods have low accuracy and poor generalization ability when dealing with high-dimensional dropout features.They focus on the analysis of the learning score and check result of online course,but neglect the phased student behaviors.Besides,the status of student participation at a given moment is necessarily impacted by the prior status of learning.To address these issues,this paper has proposed an ensemble learning model for early dropout prediction(ELM-EDP)that integrates attention-based document representation as a vector(A-Doc2vec),feature learning of course difficulty,and weighted soft voting ensemble with heterogeneous classifiers(WSV-HC).First,A-Doc2vec is proposed to learn sequence features of student behaviors of watching lecture videos and completing course assignments.It also captures the relationship between courses and videos.Then,a feature learning method is proposed to reduce the interference caused by the differences of course difficulty on the dropout prediction.Finally,WSV-HC is proposed to highlight the benefits of integration strategies of boosting and bagging.Experiments on the MOOCCube2020 dataset show that the high accuracy of our ELM-EDP has better results on Accuracy,Precision,Recall,and F1.
基金partially supported by the National Natural Science Foundation of China (Nos. 61866007, 61363029, 61662014, 61763007, and U1811264)the Natural Science Foundation of Guangxi District (No. 2018GXNSFDA138006)+2 种基金Guangxi Key Laboratory of Trusted Software (No. KX201721)Humanities and Social Sciences Research Projects of the Ministry of Education (No. 17JDGC022)Chongqing Higher Education Reform Project (No. 183137)
文摘Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout prediction aims to predict whether a learner will exhibit learning behaviors during several consecutive days in the future. Therefore, the information related to the learning behaviors of a learner in several consecutive days should be considered. After in-depth analysis of the learning behavior patterns of the MOOC learners, this study reports that learners often exhibit similar learning behaviors on several consecutive days, i.e., the learning status of a learner for the subsequent day is likely to be similar to that for the previous day. Based on this characteristic of MOOC learning,this study proposes a new simple feature matrix for keeping information related to the local correlation of learning behaviors and a new Convolutional Neural Network(CNN) model for predicting the dropout. Extensive experimental validations illustrate that the local correlation of learning behaviors should not be neglected. The proposed CNN model considers this characteristic and improves the dropout prediction accuracy. Furthermore, the proposed model can be used to predict dropout temporally and early when sufficient data are collected.
基金supported by the Energy Innovation Research Programme of Singapore under Grant No.NRF2013EWT-EIRP004-012Qilu Youth Scholar Discipline Construction Funding from Shandong University+1 种基金the National Natural Science Foundation of China(NSFC)under Grant Nos.61573220,61633014Projects of Major International(Regional)Joint Research Program NSFC under Grant No.61720106011
文摘This paper addresses a channel scheduling problem for group of dynamically decoupled nonlinear subsystems with actuators connected through digital communication channels and controlled by a centralized controller. Due to the limited communication capacity, only one channel can be activated and hence there is only one pair of sensor and actuator can communicate with the controller at each time instant. In addition, the communication channels are not reliable so Markovian packed dropout is introduced. A predictive control framework is adopted for controller/scheduler co-design to alleviate the performance loss caused by the limited communication capacity. Instead of sending a single control value, the controller sends a sequence of predicted control values to a selected actuator so that there are control input candidates which can be fed to the subsystem when the actuator does not communicate with the controller. A stochastic algorithm is proposed to schedule the usage of the communication medium and sufficient conditions on stochastic stability are given under some mild assumptions.
基金supported by the National Natural Science Foundation of China(Grant Nos.6110409761321002+3 种基金61120106010&61522303)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111101120027)the Program for New Century Excellent Talents in University(Grant No.NCET-13-0045)Beijing Higher Education Young Elite Teacher Project
文摘Stability of a networked predictive control system subject to network-induced delay and data dropout is investigated in this study. By modeling the closed-loop system as a switched system with an upper-triangular structure, a necessary and sufficient stability criterion is developed. From the criterion, it also can be seen that separation principle holds for networked predictive control systems. A numerical example is provided to confirm the validity and effectiveness of the obtained results.