The spatiotemporal variations of the site and regional droughts in China during 1960–2009 were analyzed by applying a daily composite-drought index (CDI) to 722 stations in China's Mainland. Droughts frequently...The spatiotemporal variations of the site and regional droughts in China during 1960–2009 were analyzed by applying a daily composite-drought index (CDI) to 722 stations in China's Mainland. Droughts frequently happened in a zone extended from Southwest China to the Yellow River, North China, and the southwestern part of Northeast China, with two centers of high frequency in North China and Southwest China. In Southwest and South China, droughts tend to happen during the winter. In North China and along the Yellow River, droughts mainly occur during the winter and during May–June. During the past 50 years, the geographical distribution of site drought events showed high frequencies (0.9–1.3 times per year) in the upper Yellow River basin and North China, comparing with moderate frequencies (0.6–0.9 times per year) in Southwest China and the southwestern part of Northeast China and with lower frequencies over the middle and lower Yangtze River basin. And the frequencies increased over China's Mainland except for the upper reaches of the Yangtze River. A regional drought (RD) event is a widespread and persistent event that covers at least five adjacent sites and lasts for at least 10 days. There were 252 RD events in the past 50 years—five times per year. Most RD events lasted for 100 days and covered 100 stations, but the longest and largest RD event lasted for 307 days from 6 September 1998 to 9 July 1999 and covered 327 stations from North to Southwest China.展开更多
Variation characteristics of persistent drought events in Guangdong province are analyzed using 45-year(1961-2005) and 86-station observational precipitation data of Guangdong,and the causes of drought events are disc...Variation characteristics of persistent drought events in Guangdong province are analyzed using 45-year(1961-2005) and 86-station observational precipitation data of Guangdong,and the causes of drought events are discussed from different angles(e.g.,atmospheric circulation,sea surface temperature) on the basis of global coverage datasets of sea surface temperature and atmospheric elements.It is found that the occurrence frequency of persistent drought events in Guangdong province is once every 26 months on average,and autumn-winter or winter-spring persistent drought events take up the majority.The persistent drought events possess large scale spatial characteristics.While the 1960s is the most frequent and strongest decade of drought events in the latter half of the 20th century,the occurrence is more frequent and the intensity is stronger in the first five years of the 21st century(2001-2005).This reflects the response of regional extreme climatic events in Guangdong to global climatic change.The atmospheric circulation,sea surface temperature,etc,appear to have different abnormal characteristics when drought events happen in different seasons.The results of this paper provide some good reference information for the drought forecast,especially for the dynamic interpretation of climatic model products.展开更多
Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a m...Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a major threat to global ecological stability. Variations in stability among different ecosystemshave been confirmed, but it remains unclear whether there are differences in stability within the sameterrestrial vegetation ecosystem under the influence of climate events in different directions and intensities.China's grassland ecosystem includes most grassland types and is a good choice for studying this issue.This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify thedirections and intensities of different types of climate events, and based on Normalized DifferenceVegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measurestability). Based on a traditional regression model, standardized methods were integrated to analyze theimpacts of the intensity and duration of drought and wet events on vegetation stability. The resultsshowed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had thelowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at anintermediate level. Regarding the impact of the duration and intensity of climate events on vegetationecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainlyaffected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppewas mainly affected by intensity in wet environments, and duration had no significant impact. Ourconclusions can provide decision support for the future grassland ecosystem governance.展开更多
An objective identifi cation technique for regional extreme events (OITREE) and the daily composite-drought index (CI) at 101 stations in Southwest China (including Sichuan, Yunnan, Guizhou, and Chongqing) are u...An objective identifi cation technique for regional extreme events (OITREE) and the daily composite-drought index (CI) at 101 stations in Southwest China (including Sichuan, Yunnan, Guizhou, and Chongqing) are used to detect regional meteorological drought events between 1960 and 2010. Values of the parameters of the OITREE method are determined. A total of 87 drought events are identifi ed, including 9 extreme events. The 2009-2010 drought is the most serious in Southwest China during the past 50 years. The regional meteorological drought events during 1960-2010 generally last for 10-80 days, with the longest being 231 days. Droughts are more common from November to next April, and less common in the remaining months. Droughts occur more often and with greater intensity in Yunnan and southern Sichuan than in other parts of Southwest China. Strong (extreme and severe) regional meteorological drought events can be divided into fi ve types. The southern type has occurred most frequently, and Yunnan is the area most frequently stricken by extreme and severe drought events. The regional meteorological drought events in Southwest China have increased in both frequency and intensity over the study period, and the main reason appears to be a signifi cant decrease in precipitation over this region, but a simultaneous increase in temperature also contributes.展开更多
Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the cluster- ing ex...Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the cluster- ing extreme drought events were investigated by using the spatial point process theory. It is found that severe droughts present a trend of gradual increase as a result of the significant increase and clustering tendency of severe droughts in autumn. The periodicity analysis of the clustering extreme droughts in different seasons suggests that there is a remarkable interdecadal change in the occurrence of clustering extreme droughts in winter. Meanwhile, it is revealed that the clustering extreme drought events exhibit greatly different annual mean spatial distributions during 1961 2010, with scattered and concentrated clustering zones alternating on the decadal timescale. Furthermore, it is found that the decadal-mean spatial distributions of extreme drought events in summer are correlated out of phase with those of the rainy bands over China in the past 50 years, and a good decadal persistence exists between the autumn and winter extreme droughts, implying a salient feature of consecutive autunm-winter droughts in this 50-yr period. Compared with other regions of China, Southwest China bears the most prominent characteristic of clustering extreme droughts.展开更多
For the area of Eurasia concentrated with developing countries(referred to here by the abbreviation DPEA),mainly located in Asia and Eastern Europe,this work presents datasets of gridded meteorological drought events ...For the area of Eurasia concentrated with developing countries(referred to here by the abbreviation DPEA),mainly located in Asia and Eastern Europe,this work presents datasets of gridded meteorological drought events and country-based drought risk by combining multiple drought indices and socio-economic data.A basic gridded dataset of the drought events during 1950-2015 is extracted from three drought indices:the self-calibrating Palmer Drought Severity Index,the Standardized Precipitation Index,and the Standardized Precipitation Evapotranspiration Index.The three drought indices generally show consistent characteristics of drought events in DPEA.A second-level dataset(a drought risk dataset)is then produced as the product of drought hazard,exposure and vulnerability during 2000-2015.For drought exposure,the indicators of population and livestock density,agricultural land and water stress are chosen,while drought vulnerability composites multiple social,economic and infrastructural factors.Drought hazard tends to concentrate at the southern rim of Eurasia.Relatively large differences in drought exposure exist between different countries,but for drought vulnerability the differences are small.After considering the socio-economic components in risk assessment,most countries in West,South-Central and South Asia have the highest drought risk in DPEA.The datasets of drought events and risks are available at http://www.dx.doi.org/10.11922/sciencedb.898.展开更多
The most famous deserts exist in subtropical regions which is the direct outcome of insufficient precipitation and high temperatures. The Middle East deserts are subjected often to dust, which reduces horizontal visib...The most famous deserts exist in subtropical regions which is the direct outcome of insufficient precipitation and high temperatures. The Middle East deserts are subjected often to dust, which reduces horizontal visibility to 5 km, and sometimes even to less than 100 m. The severe and prolong drought recently afflicting the west Asia region has been suggested to be instrumental in producing an increased output of dust into the atmosphere from the region. Regarding the increasing of dust events over the west of Iran with the external origin in the recent decade (from 2000 to present), so the main dust-source areas over Iraq and Syria have been detected using the dust-source map of the southwest of Asia, satellite images and soil type maps. We considered the relationship between the increasing of dust events in the western of Iran and drought expansion over the main dust-production areas during the recent decade. Dust frequency data series, and drought variables which include the VHI (vegetation health index), precipitation and temperature data series in long-term and monthly scales have been monitored and compared. And then we used the correlation analysis that indicated the significant proximity between the dust events and droughts/dryness in a yearly scale and also during the warm season (May to Aug). Meantime the derived results from the T-student test for the aforementioned data series confirm the fact that the droughts are parallel to the increasing of dust events from 1996 to 2011 (especially in the recent decade). We found that the recent droughts in the external dust source areas had the remarkable potential to increase the dust events in the west of Iran.展开更多
Increases in the frequency of extreme weather and climate events and the severity of their impacts on the natural environment and society have been observed across the globe in recent decades. In addition to natural c...Increases in the frequency of extreme weather and climate events and the severity of their impacts on the natural environment and society have been observed across the globe in recent decades. In addition to natural climate variability and greenhouse-induced climate change, extreme weather and climate events produce the most pronounced impacts. In this paper, the climate of three island countries in the Western Pacific: Fiji, Samoa and Tuvalu, has been analysed. Warming trends in annual average maximum and minimum temperatures since the 1950s have been identified, in line with the global warming trend. We present recent examples of extreme weather and climate events and their impacts on the island countries in the Western Pacific: the 2011 drought in Tuvalu, the 2012 floods in Fiji and a tropical cyclone, Evan, which devastated Samoa and Fiji in December 2012. We also relate occurrences of the extreme weather and climate events to phases of the El Niño-Southern Oscillation (ENSO) phenomenon. The impacts of such natural disasters on the countries are severe and the costs of damage are astronomical. In some cases, climate extremes affect countries to such an extent that governments declare a national state of emergency, as occurred in Tuvalu in 2011 due to the severe drought’s impact on water resources. The projected increase in the frequency of weather and climate extremes is one of the expected consequences of the observed increase in anthropogenic greenhouse gas concentration and will likely have even stronger negative impacts on the natural environment and society in the future. This should be taken into consideration by authorities of Pacific Island Countries and aid donors when developing strategies to adapt to the increasing risk of climate extremes. Here we demonstrate that the modern science of seasonal climate prediction is well developed, with current dynamical climate models being able to provide skilful predictions of regional rainfall two-three months in advance. The dynamic climate model-based forecast products are now disseminated to the National Meteorological Services of 15 island countries in the Western Pacific through a range of web-based information tools. We conclude with confidence that seasonal climate prediction is an effective solution at the regional level to provide governments and local communities of island nations in the Western Pacific with valuable assistance for informed decision making for adaptation to climate variability and change.展开更多
Togo’s economy is heavily dependent on rainfed agriculture. Therefore, anomalies in precipitation can have a significant impact on crop yields, affecting food production and security. Thus, monitoring anomalous clima...Togo’s economy is heavily dependent on rainfed agriculture. Therefore, anomalies in precipitation can have a significant impact on crop yields, affecting food production and security. Thus, monitoring anomalous climate conditions in Togo through the combination of precipitation satellite-based data and Standard Precipitation Index (SPI) help anticipate the development of drought scenarios or excessive rainfall, allowing farmers to adjust their strategies and minimize losses. Continuous and adequate spatial monitoring of these climate anomalies provided by satellite-based products can be central to an effective early warning system (EWS) implementation in Togo. Precipitation satellite-based products have been presented invaluable tools for assessing droughts and , offering timely and comprehensive data that supports a wide range of applications. In this study, we applied the Integrated Multi-satellite Retrievals for GPM (IMERG) rainfall product, a unified satellite global precipitation product developed by NASA, to identify and characterize the severity of dry and wet climate events in Togo during the period from 2001 to 2019. The Standard Precipitation Index (SPI), as the main index recommended by the World Meteorological Organization to monitor drought wide world, was selected as the reference index to monitor dry and wet climate events across Togo regions. The results show two distinct major climate periods in Togo in the timeframe analyzed (2001-2019), one dominated by wet events from 2008 to 2010, and a second marked by severe and extreme dry events from 2013 to 2015;MERG rainfall and SPI combination were able to capture these events consistently.展开更多
基金supported jointly bythe National Natural Science Foundation of China (GrantNo. 40975039)the Key Technologies R&D Program(Grant No. 2009BAC51B04)+1 种基金the Chinese COPES Project (Grant No. GYHY201006018)The CDI data was provided by the Key Technologies R&D Program (GrantNo. 2007BAC29B06).
文摘The spatiotemporal variations of the site and regional droughts in China during 1960–2009 were analyzed by applying a daily composite-drought index (CDI) to 722 stations in China's Mainland. Droughts frequently happened in a zone extended from Southwest China to the Yellow River, North China, and the southwestern part of Northeast China, with two centers of high frequency in North China and Southwest China. In Southwest and South China, droughts tend to happen during the winter. In North China and along the Yellow River, droughts mainly occur during the winter and during May–June. During the past 50 years, the geographical distribution of site drought events showed high frequencies (0.9–1.3 times per year) in the upper Yellow River basin and North China, comparing with moderate frequencies (0.6–0.9 times per year) in Southwest China and the southwestern part of Northeast China and with lower frequencies over the middle and lower Yangtze River basin. And the frequencies increased over China's Mainland except for the upper reaches of the Yangtze River. A regional drought (RD) event is a widespread and persistent event that covers at least five adjacent sites and lasts for at least 10 days. There were 252 RD events in the past 50 years—five times per year. Most RD events lasted for 100 days and covered 100 stations, but the longest and largest RD event lasted for 307 days from 6 September 1998 to 9 July 1999 and covered 327 stations from North to Southwest China.
基金Project of Science Planning of Guangdong Province (2005B32601007)Natural Science Foundation of China (41075073,40675055)
文摘Variation characteristics of persistent drought events in Guangdong province are analyzed using 45-year(1961-2005) and 86-station observational precipitation data of Guangdong,and the causes of drought events are discussed from different angles(e.g.,atmospheric circulation,sea surface temperature) on the basis of global coverage datasets of sea surface temperature and atmospheric elements.It is found that the occurrence frequency of persistent drought events in Guangdong province is once every 26 months on average,and autumn-winter or winter-spring persistent drought events take up the majority.The persistent drought events possess large scale spatial characteristics.While the 1960s is the most frequent and strongest decade of drought events in the latter half of the 20th century,the occurrence is more frequent and the intensity is stronger in the first five years of the 21st century(2001-2005).This reflects the response of regional extreme climatic events in Guangdong to global climatic change.The atmospheric circulation,sea surface temperature,etc,appear to have different abnormal characteristics when drought events happen in different seasons.The results of this paper provide some good reference information for the drought forecast,especially for the dynamic interpretation of climatic model products.
基金the National Natural Science Foundation of China(42271289).
文摘Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a major threat to global ecological stability. Variations in stability among different ecosystemshave been confirmed, but it remains unclear whether there are differences in stability within the sameterrestrial vegetation ecosystem under the influence of climate events in different directions and intensities.China's grassland ecosystem includes most grassland types and is a good choice for studying this issue.This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify thedirections and intensities of different types of climate events, and based on Normalized DifferenceVegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measurestability). Based on a traditional regression model, standardized methods were integrated to analyze theimpacts of the intensity and duration of drought and wet events on vegetation stability. The resultsshowed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had thelowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at anintermediate level. Regarding the impact of the duration and intensity of climate events on vegetationecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainlyaffected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppewas mainly affected by intensity in wet environments, and duration had no significant impact. Ourconclusions can provide decision support for the future grassland ecosystem governance.
基金Supported by the National Natural Science Foundation of China(41175075)Climate Change Special Fund of the China Meteorological Administration(CCSF201333)
文摘An objective identifi cation technique for regional extreme events (OITREE) and the daily composite-drought index (CI) at 101 stations in Southwest China (including Sichuan, Yunnan, Guizhou, and Chongqing) are used to detect regional meteorological drought events between 1960 and 2010. Values of the parameters of the OITREE method are determined. A total of 87 drought events are identifi ed, including 9 extreme events. The 2009-2010 drought is the most serious in Southwest China during the past 50 years. The regional meteorological drought events during 1960-2010 generally last for 10-80 days, with the longest being 231 days. Droughts are more common from November to next April, and less common in the remaining months. Droughts occur more often and with greater intensity in Yunnan and southern Sichuan than in other parts of Southwest China. Strong (extreme and severe) regional meteorological drought events can be divided into fi ve types. The southern type has occurred most frequently, and Yunnan is the area most frequently stricken by extreme and severe drought events. The regional meteorological drought events in Southwest China have increased in both frequency and intensity over the study period, and the main reason appears to be a signifi cant decrease in precipitation over this region, but a simultaneous increase in temperature also contributes.
基金Supported by the National Natural Science Foundation of China (41005043 and U1133603)National Basic Research and Development (973) Program of China (2012CB955901)
文摘Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the cluster- ing extreme drought events were investigated by using the spatial point process theory. It is found that severe droughts present a trend of gradual increase as a result of the significant increase and clustering tendency of severe droughts in autumn. The periodicity analysis of the clustering extreme droughts in different seasons suggests that there is a remarkable interdecadal change in the occurrence of clustering extreme droughts in winter. Meanwhile, it is revealed that the clustering extreme drought events exhibit greatly different annual mean spatial distributions during 1961 2010, with scattered and concentrated clustering zones alternating on the decadal timescale. Furthermore, it is found that the decadal-mean spatial distributions of extreme drought events in summer are correlated out of phase with those of the rainy bands over China in the past 50 years, and a good decadal persistence exists between the autumn and winter extreme droughts, implying a salient feature of consecutive autunm-winter droughts in this 50-yr period. Compared with other regions of China, Southwest China bears the most prominent characteristic of clustering extreme droughts.
基金This research was jointly supported by the Chinese Academy of Sciences Grant XDA19030402,XDA20020201,and 134111KYSB20160010.
文摘For the area of Eurasia concentrated with developing countries(referred to here by the abbreviation DPEA),mainly located in Asia and Eastern Europe,this work presents datasets of gridded meteorological drought events and country-based drought risk by combining multiple drought indices and socio-economic data.A basic gridded dataset of the drought events during 1950-2015 is extracted from three drought indices:the self-calibrating Palmer Drought Severity Index,the Standardized Precipitation Index,and the Standardized Precipitation Evapotranspiration Index.The three drought indices generally show consistent characteristics of drought events in DPEA.A second-level dataset(a drought risk dataset)is then produced as the product of drought hazard,exposure and vulnerability during 2000-2015.For drought exposure,the indicators of population and livestock density,agricultural land and water stress are chosen,while drought vulnerability composites multiple social,economic and infrastructural factors.Drought hazard tends to concentrate at the southern rim of Eurasia.Relatively large differences in drought exposure exist between different countries,but for drought vulnerability the differences are small.After considering the socio-economic components in risk assessment,most countries in West,South-Central and South Asia have the highest drought risk in DPEA.The datasets of drought events and risks are available at http://www.dx.doi.org/10.11922/sciencedb.898.
文摘The most famous deserts exist in subtropical regions which is the direct outcome of insufficient precipitation and high temperatures. The Middle East deserts are subjected often to dust, which reduces horizontal visibility to 5 km, and sometimes even to less than 100 m. The severe and prolong drought recently afflicting the west Asia region has been suggested to be instrumental in producing an increased output of dust into the atmosphere from the region. Regarding the increasing of dust events over the west of Iran with the external origin in the recent decade (from 2000 to present), so the main dust-source areas over Iraq and Syria have been detected using the dust-source map of the southwest of Asia, satellite images and soil type maps. We considered the relationship between the increasing of dust events in the western of Iran and drought expansion over the main dust-production areas during the recent decade. Dust frequency data series, and drought variables which include the VHI (vegetation health index), precipitation and temperature data series in long-term and monthly scales have been monitored and compared. And then we used the correlation analysis that indicated the significant proximity between the dust events and droughts/dryness in a yearly scale and also during the warm season (May to Aug). Meantime the derived results from the T-student test for the aforementioned data series confirm the fact that the droughts are parallel to the increasing of dust events from 1996 to 2011 (especially in the recent decade). We found that the recent droughts in the external dust source areas had the remarkable potential to increase the dust events in the west of Iran.
文摘Increases in the frequency of extreme weather and climate events and the severity of their impacts on the natural environment and society have been observed across the globe in recent decades. In addition to natural climate variability and greenhouse-induced climate change, extreme weather and climate events produce the most pronounced impacts. In this paper, the climate of three island countries in the Western Pacific: Fiji, Samoa and Tuvalu, has been analysed. Warming trends in annual average maximum and minimum temperatures since the 1950s have been identified, in line with the global warming trend. We present recent examples of extreme weather and climate events and their impacts on the island countries in the Western Pacific: the 2011 drought in Tuvalu, the 2012 floods in Fiji and a tropical cyclone, Evan, which devastated Samoa and Fiji in December 2012. We also relate occurrences of the extreme weather and climate events to phases of the El Niño-Southern Oscillation (ENSO) phenomenon. The impacts of such natural disasters on the countries are severe and the costs of damage are astronomical. In some cases, climate extremes affect countries to such an extent that governments declare a national state of emergency, as occurred in Tuvalu in 2011 due to the severe drought’s impact on water resources. The projected increase in the frequency of weather and climate extremes is one of the expected consequences of the observed increase in anthropogenic greenhouse gas concentration and will likely have even stronger negative impacts on the natural environment and society in the future. This should be taken into consideration by authorities of Pacific Island Countries and aid donors when developing strategies to adapt to the increasing risk of climate extremes. Here we demonstrate that the modern science of seasonal climate prediction is well developed, with current dynamical climate models being able to provide skilful predictions of regional rainfall two-three months in advance. The dynamic climate model-based forecast products are now disseminated to the National Meteorological Services of 15 island countries in the Western Pacific through a range of web-based information tools. We conclude with confidence that seasonal climate prediction is an effective solution at the regional level to provide governments and local communities of island nations in the Western Pacific with valuable assistance for informed decision making for adaptation to climate variability and change.
文摘Togo’s economy is heavily dependent on rainfed agriculture. Therefore, anomalies in precipitation can have a significant impact on crop yields, affecting food production and security. Thus, monitoring anomalous climate conditions in Togo through the combination of precipitation satellite-based data and Standard Precipitation Index (SPI) help anticipate the development of drought scenarios or excessive rainfall, allowing farmers to adjust their strategies and minimize losses. Continuous and adequate spatial monitoring of these climate anomalies provided by satellite-based products can be central to an effective early warning system (EWS) implementation in Togo. Precipitation satellite-based products have been presented invaluable tools for assessing droughts and , offering timely and comprehensive data that supports a wide range of applications. In this study, we applied the Integrated Multi-satellite Retrievals for GPM (IMERG) rainfall product, a unified satellite global precipitation product developed by NASA, to identify and characterize the severity of dry and wet climate events in Togo during the period from 2001 to 2019. The Standard Precipitation Index (SPI), as the main index recommended by the World Meteorological Organization to monitor drought wide world, was selected as the reference index to monitor dry and wet climate events across Togo regions. The results show two distinct major climate periods in Togo in the timeframe analyzed (2001-2019), one dominated by wet events from 2008 to 2010, and a second marked by severe and extreme dry events from 2013 to 2015;MERG rainfall and SPI combination were able to capture these events consistently.
基金supported by the National Key Technologies R&D Program of China[grant number 2022YFC3002803]the National Science Fund for Distinguished Young Scholars[grant number 41925021].
文摘杉木(Cunninghamia lanceolata)是亚热带地区主要造林树种之一,其在区域碳循环和缓解气候变化中起着重要的作用。以亚热带地区6个站点(荆关、马鬃岭、分宜、将乐、东风、高峰)杉木人工林为研究对象,建立树轮标准化年表,分析树木年轮年表与气候因子的关系,解析不同研究区杉木径向生长对气候变化的响应机制,探讨不同站点杉木对干旱事件的响应策略,为该地区杉木人工林的经营管理提供理论依据。研究结果表明,6个研究区杉木树轮宽度对气候变化的平均敏感度大于0.15,样本总体代表性大于0.85,均处于可接受水平,表明6个站点的杉木样本具有区域代表性,适用于进行气候相关分析。杉木径向生长主要与生长季的平均温度和降水量、上一年夏季的最低温度正相关,与当年夏季最高温度负相关,高峰站点的径向生长与7-10月的相对湿度显著正相关,其他地点径向生长与月相对湿度相关性较弱,分宜、东风和高峰站的径向生长与干旱指数显著正相关,其他地点的杉木树轮宽度与干旱指数相关性较弱。干旱事件对6个站点杉木生长均产生了负面影响,胸高断面积增长(Basal area increment, BAI)呈先上升后下降的趋势,在生长后期,6个研究点的BAI出现不同程度的衰退现象。第二次干旱发生后,杉木对干旱事件的应对能力更强。亚热带纬度较低的地区杉木受到干旱的影响较大,温暖而湿润环境下的杉木对干旱事件的抵抗力较小,恢复力较高。