Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection ...Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.展开更多
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close rel...Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.展开更多
The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been ide...The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been identified in other species,such as Arabidopsis,Oryza sativa,and grapevine,few reports on pear ATL gene families have been reported.In this study,92 PbrATL genes were identified and analyzed from the Pyrus breschneideri genome.Motif analysis and phylogenetic tree generation divided them into nine subgroups,and chromosome localization analysis showed that the 92 PbrATL genes were distributed in 16 of 17 pear chromosomes.Transcriptome data and quantitative real-time polymerase chain reaction(qRT-PCR)experiments demonstrated that PbrATL18,PbrATL41,and PbrATL88 were involved in both pear drought resistance and Colletotrichum fructicola infection.In addition,Arabidopsis thaliana overexpressing PbrATL18 showed greater resistance to drought stress than the wild type(WT),and PbrATL18-silenced pear seedlings showed greater sensitivity to drought and C.fructicola infection than the controls.PbrATL18 regulated plant resistance by regulating chitinase(CHI),phenylalanine ammonia-lyase(PAL),polyphenol oxidase(PPO),catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD)activities.This study provided a reference for further exploring the functions of the PbrATL gene in drought resistance and C.fructicola infection.展开更多
Genetic improvement of drought resistance is one of the main breeding goals for common bean,so molecular markers must be identified to facilitate drought resistance breeding.In this study,we evaluated the proline,treh...Genetic improvement of drought resistance is one of the main breeding goals for common bean,so molecular markers must be identified to facilitate drought resistance breeding.In this study,we evaluated the proline,trehalose,raffinose,and stachyose contents of 210 common bean accessions under two watering conditions and found large variations in all four.The coefficients of variation ranged from 21.21%for proline content to 78.69%for stachyose content under well-watered conditions,and from 20.11%for proline content to 50.08%for trehalose content under drought stress.According to our genome-wide association analysis,32 quantitative trait loci were associated with drought resistance,seven of which overlapped with known loci.Four hotspot regions were identified at Pv01,Pv07 and Pv11.A set of candidate genes was identified,including genes encoding MYB,bZIP,bHLH,ERF,and protein kinases.Among these genes,Phvul.001G189400,Phvul.007G273000 and Phvul.008G270500 were annotated as bZIP,ERF and WRKY,respectively.These genes are reportedly involved in drought stress responses in Arabidopsis thaliana and were induced by drought stress in common bean.Significant SNPs in six candidate gene regions formed different haplotypes,and phenotypic analysis revealed significant differences among the haplotypes.These results provide new insight into the genetic basis of drought resistance in common bean and reveal candidate genes and superior natural variations that will be useful for improving common bean.展开更多
In order to explore the response mechanism of Passiflora edulis Sims to drought stress,the changes in morpho-logical and physiological traits of Passiflora edulis Sims under different drought conditions were studied.A t...In order to explore the response mechanism of Passiflora edulis Sims to drought stress,the changes in morpho-logical and physiological traits of Passiflora edulis Sims under different drought conditions were studied.A total of 7 germplasm resources of Passiflora edulis Sims were selected and tested under drought stress by the pot culture method under 4 treatment levels:75%–80%(Control,CK)of maximumfield water capacity,55%–60%(Light Drought,LD)of maximumfield water capacity,i.e.,mild drought,40%–45%(Moderate Drought,MD)of max-imumfield water capacity,i.e.,moderate drought and 30%–35%(Severe Drought,SD)of maximumfield water capacity,i.e.,severe drought.On the 40th day of drought treatment,13 indices,including seedling growth mor-phology,physiology,and biochemistry,were measured.The results showed that under drought stress,the height and ground diameter of P.edulis Sims gradually decreased with increasing drought stress,and there were signifi-cant differences in seedling height and ground diameter among the treatments.Drought stress significantly inhib-ited the growth of seven P.edulis Sims varieties.The contents of soluble sugar(SS),soluble protein(SP),proline(Pro),and other substances in P.edulis Sims basically increased with increasing drought stress.With the aggrava-tion of drought stress,the malondialdehyde(MDA)content of P.edulis Sims tended to increase to different degrees,the superoxide dismutase(SOD)activity and peroxidase(POD)activity both tended to increase atfirst and then decrease,and the change in catalase(CAT)activity mostly showed a gradual increasing trend.The con-tents of endogenous hormones in P.edulis Sims significantly differed under different degrees of drought stress.With the aggravation of drought stress,the abscisic acid(ABA)content of P.edulis Sims tended to increase,whereas the contents of gibberellin(GA),indoleacetic acid(IAA),and zeatin nucleoside(ZR)exhibited a down-ward trend.A comprehensive evaluation of the drought resistance of seven P.edulis Sims varieties was conducted based on the principal component analysis method,and the results showed that the drought resistance decreased in the order XH-BL>XH-TWZ>TN1>GH1>ZJ-MT>LP-LZ>DH-JW.展开更多
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ...Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture.展开更多
As an essential crop that provides vegetable oil and protein,soybean(Glycine max(L.)Merr.)is widely planted all over the world.However,the scarcity of water resources worldwide has seriously impacted on the quality an...As an essential crop that provides vegetable oil and protein,soybean(Glycine max(L.)Merr.)is widely planted all over the world.However,the scarcity of water resources worldwide has seriously impacted on the quality and yield of soybean.To address this,exploring excellent genes for improving drought resistance in soybean is crucial.In this study,we identified natural variations of GmFNSII-2(flavone synthase II)significantly affect the drought resistance of soybeans.Through sequence analysis of GmFNSII-2 in 632 cultivated and 44 wild soybeans nine haplotypes were identified.The full-length allele GmFNSII-2^(C),but not the truncated allele GmFNSII-2^(A) possessing a nonsense nucleotide variation,increased enzyme activity.Further research found that GmDREB3,known to increase soybean drought resistance,bound to the promoter region of GmFNSII-2^(C).GmDREB3 positively regulated the expression of GmFNSII-2^(C),increased flavone synthase abundance and improved the drought resistance.Furthermore,a singlebase mutation in the GmFNSII-2^(C) promoter generated an additional drought response element(CCCCT),which had stronger interaction strength with GmDREB3 and increased its transcriptional activity under drought conditions.The frequency of drought-resistant soybean varieties with Hap 1(Pro:GmFNSII-2^(C))has increased,suggesting that this haplotype may be selected during soybean breeding.In summary,GmFNSII-2^(C) could be used for molecular breeding of drought-tolerant soybean.展开更多
The planting areas of mung bean are mostly arid and semi-arid areas, and lack of irrigation conditions. Many studies have reported that fertilization can increase drought resistance. In our previous research, optimize...The planting areas of mung bean are mostly arid and semi-arid areas, and lack of irrigation conditions. Many studies have reported that fertilization can increase drought resistance. In our previous research, optimized nitrogen (N), phosphorus (P) and potassium (K) combined fertilization model was established in mung bean. In the present study, the optimal fertilization was conducted in pot trails, and mung bean varieties Bailv9 and Bailv11 were used as materials, while the four water regimes, and three fertilization ratios of F120 (optimal fertilization), F100 (conventional fertilization), F50 (half of conventional fertilization) treatments were set, to compare each fertilization ratio effects and non-fertilization condition under each water regimes respectively. Under different water conditions, the investigation of N, P, and K effects of optimal fertilization showed that the yield of Bailv9 was not sensitive to water stress and had strong drought resistance;their water sensitivity index and drought resistance coefficient were BaiLv9 as Di = 0.89 and DC = 0.79. The yield of Bailv11 was sensitive to water stress, and their drought resistance was weak;their water sensitivity index and drought resistance coefficient were BL11 Di = 1.76 DC = 0.59, and under different water treatment conditions, Bailv9 and Bailv11 all had the best yield and other related traits increase in the F120 fertilization mode compared with other fertilization and non-fertilization conditions, and the average yield increases were 31.56% and 28.08%, respectively. The pot trails conduct the drought stress treatments in mung bean varieties Bailv9, Bailv11, Bailv935 and Bailv985 to determine the function of NPK optimized fertilization for improving plants growth in drought stress condition. Compared with the mung bean varieties treated with F50, F100, and F120, the yield of Bailv9 increased by 56.20%, 81.27%, and 107.22%, respectively;compared with that of F0, the yield of Bailv11 increased by 10.18%, 19.42%, and 45.88%, respectively;Bailv935 increased by 26.52%, 61.90%, 74.16% respectively, and Bailv985 increased by 23.78%, 56.92%, 87.62% respectively. The significant performances of optimized fertilization were also verified in 20 mung bean varieties in our filed trails. The research establishes a theoretical basis for introducing the model into production practice in the next step.展开更多
A rice cyclase gene,OsCYL4b,identified as an alternative splice variant of the cyclase gene OsCYL4a,is involved in the regulation of drought stress and oxidative response.Compared with OsCYL4a,OsCYL4b lacks the second...A rice cyclase gene,OsCYL4b,identified as an alternative splice variant of the cyclase gene OsCYL4a,is involved in the regulation of drought stress and oxidative response.Compared with OsCYL4a,OsCYL4b lacks the second exon,which is located in the conserved motif 3,and may be a functionally important site.Our results suggested that OsCYL4b was responsive to multiple abiotic stresses,and was localized to both the cytoplasm and plasma membrane.The overexpression of OsCYL4b resulted in significantly enhanced drought and osmotic stress tolerance,reduced water loss,and increased abscisic acid(ABA)content compared with the wild type(WT).展开更多
In order to determine the physiological mechanism of drought resistance of northern wheat in China,six drought resistant wheat and one sensitivity to drought wheat were planted in pots.They were subjected to drought t...In order to determine the physiological mechanism of drought resistance of northern wheat in China,six drought resistant wheat and one sensitivity to drought wheat were planted in pots.They were subjected to drought treatment and normal water when the plants grew to the 3-leaf stage.Samples were collected at 10,20,30,and 40 days after the drought treatment,respectively.The electrical conductivity,photosynthetic parameters,chlorophyll fluorescence parameters,sugar content,proline content,protein content,and active oxygen scavenging enzyme activity of the plants were detected,and the agronomic traits of the wheat varieties were investigated at maturity.The results indicated that the phenotype and yield-related factors of Darkhan 144 changed little under the drought stress.The relative electrical conductivity of Kefeng 6 and Darkhan 166 was lower under the drought stress,and their cell membrane was less damaged.The Darkhan 144 and Darkhan 166 had higher drought resistance coefficients,and were the wheat varieties with stronger drought resistance.However,the physiological mechanisms of drought resistance of these three wheat were different:Darkhan 144 maintained a higher photosynthetic activity under the drought stress;Darkhan 166 maintained a higher protein content,photosynthetic activity and active oxygen scavenging enzyme activity.In addition,other drought-resistant varieties Kefeng 6,Kefeng 10 and Longmai 26 had a higher content of osmoregulatory substances under the drought stress.展开更多
This study aimed to screen drought stress indicators and analyze the drought resistance in 105 cultivated rice germplasm resources in Guangxi Zhuang Autonomous Region under drought stress in the whole growth period ba...This study aimed to screen drought stress indicators and analyze the drought resistance in 105 cultivated rice germplasm resources in Guangxi Zhuang Autonomous Region under drought stress in the whole growth period based on D value of seven morphological traits including panicle neck thickness,effective panicle number per plant,1 000-grain weight,filled grain number per panicle,total grain number,seed setting rate and yield per plant.According to the results,under drought stress,yield per plant exhibited significant positive correlation with panicle neck thickness and exhibited extremely significant positive correlation with other five morphological traits.Based on the identification and evaluation of comprehensive drought-resistance index D value,seven highly drought-resistant cultivated rice varieties were screened,accounting for 6.67%.Upland rice germplasm resources in Guangxi Zhuang Autonomous Region possess strong drought-resistance capacity,which could be used to screen highly drought-resistant rice germplasm materials.This study provided material basis and theoretical reference for breeding drought resistant rice cultivars in Guangxi Zhuang Autonomous Region.展开更多
[Objective]The aim was to study the response mechanism of drought stress of wheat varieties in different drought-resistance species,and protect the effect of exogenous NO on oxidative damage and photosynthetic apparat...[Objective]The aim was to study the response mechanism of drought stress of wheat varieties in different drought-resistance species,and protect the effect of exogenous NO on oxidative damage and photosynthetic apparatus of wheat leaves under drought stress.[Method]Using low-resistance Yumai 949 and high-resistance Xiamai 5 as test materials,drought stress was carried out to seedlings in five-leaf stage with 15% PEG-6000,and then NO(0.75 mmol/L SNP,sodium nitroprusside,exogenous NO donor) was used for regulation in drought condition,and antioxidant and photosynthetic activities was determined.Three treatments were set in the experiment.[Result]SOD,CAT and APX activities of high resistance Xiamai 5 were much higher than low resistance Yumai 949,so were MDA and chlorophyll content.And the change range of these physiological indexes of high resistance species was smaller than high-yielding and low resistance species under drought stress.NO increased the adaptation to drought stress of these physiological indexes significantly.[Conclusion]Exogenous NO could increase the activity of antioxidant enzymes of wheat leaves under drought stress,and enhance the drought resistance of wheat.展开更多
In order to clarify drought resistance of proso millet applied in field production in Shanxi, we identified its drought resistance during the whole growth period and measured nine traits, including plant height, panic...In order to clarify drought resistance of proso millet applied in field production in Shanxi, we identified its drought resistance during the whole growth period and measured nine traits, including plant height, panicle length, stem diameter, panicle weight, grain weight per spike, straw weight per plant, node numbers of main stem, 1 000-grain weight and effective panicles, under different treatments. Principal component analysis and stepwise regression analysis were used for comprehensive evaluation of drought resistance during the whole growth period and screening the drought index. The results showed that there were correlations among 9 phenotypic traits. The coefficient of variation of panicle weight and straw weight per plant sharply reduced under normal water supply and drought stress. Landrace "yellow millet" had the strongest drought resistance(D =0.87), integrated drought D value and membership function value of yield had significant correlation(r =0.515 9, P〈0.05). Panicle weight and straw weight per plant had significant impact on drought resistance and could be taken as comprehensive indexes of drought resistance identification in growth period.展开更多
[Objective] This study aimed to investigate the correlations between the drought tolerance and plant traits of hybrid rice, so as to provide theoretical basis for the breeding of drought-tolerant rice varieties. [Meth...[Objective] This study aimed to investigate the correlations between the drought tolerance and plant traits of hybrid rice, so as to provide theoretical basis for the breeding of drought-tolerant rice varieties. [Method] In the field experiment in 2011, 30 hybrid rice cultivars were grown under three different conditions: drought at til ering stage, drought at panicle initiation stage and control (keeping shal ow wa-ter during the whole growth period). Then, the main plant traits were measured, and the related drought tolerance indices were calculated. In 2012, 16 hybrid rice culti-vars were grown in pots under drought and normal water conditions respectively. And their main plant traits were measured, and the related drought tolerance indices were also calculated. [Result] The water content in soil under drought stress at til ering stage was nearly 60%, and that under drought stress at panicle initiation stage was 80%. Such low water content significantly reduced the rice yield. The cultivars with large panicle and great root growth potential had strong drought toler-ance at panicle initiation stage. Under drought stress, the cultivars with higher yield had stronger tolerance to drought. The drought tolerance indices at til ering stage had no correlations with those at panicle initiation stage. Under normal water condi-tions, the cultivars with smal er 1 000-grain weight had stronger tolerance to drought . Under drought stress , the cultivars with smal er 1 000-grain weight and higher grain yield had stronger tolerance to drought. [Conclusion] Among al the rice cultivars tested in the present study, D You 6511, Taiyou 99, Nei 5 You 317, Neixiangyou 18, Yixiangyou 7633, Tianyouhuazhan, II You 615, Neixiang 5306, Chuanguyou 7329 and Neixiang 7539 exhibited better tolerance to drought, and thus can be promoted in production.展开更多
[Objective] This study was to reveal the correlation between leaf area and drought resistance in different varieties of alfalfa.[Method] Using various alfalfa varieties as experimental materials,the drought resistance...[Objective] This study was to reveal the correlation between leaf area and drought resistance in different varieties of alfalfa.[Method] Using various alfalfa varieties as experimental materials,the drought resistance of leaves of drought-stressed alfalfa plants was assessed by measuring the content of free proline for analyzing its correlation with leaf area.[Result] Under drought condition,the drought resistance of alfalfa is directly related to leaf area in a positive correlation.[Conclusion] Leaf area could be used as an institutional assistant index to reflect the resistance of different alfalfa varieties.展开更多
In order to study olive’s drought resistance in Yunnan province, different varieties of olive trees from Albania, Italy, Spain and Greece were cultured, and leaves from these trees in drought season and rainy season ...In order to study olive’s drought resistance in Yunnan province, different varieties of olive trees from Albania, Italy, Spain and Greece were cultured, and leaves from these trees in drought season and rainy season were col ected and determined by physiological indices, such as proline content, relative electric con-ductivity, binding water/free water, relative water content and malon-dialdehyde in leaves. The evaluation of drought resistance with subordinate function showed that:There were no significant differences among drought resistances of varieties and provenances. The change of physiological indices in different varieties showed differ-ent ranges. The drought resistance of seven varieties decreased in order as fol ows:Koroneiki〉 Picual〉 Berat〉 Kaliniot〉 Frantoio〉 Coratina〉 Arbequina.展开更多
Based on pot experiments, major agronomic traits, biomass accumulation, leaf water-holding capacity, relative water content, root MDA content, root proline content and other physiological indicators of four different ...Based on pot experiments, major agronomic traits, biomass accumulation, leaf water-holding capacity, relative water content, root MDA content, root proline content and other physiological indicators of four different flue-cured tobacco culti-vars under drought stress were investigated, and drought resistance in various flue-cured tobacco cultivars was comprehensively analyzed with subordinate function method, aiming at clarifying the differences in drought resistance among various flue-cured tobacco cultivars. The results indicated that under drought stress, major agronomic traits, fresh and dry mass accumulation, and leaf relative water content of four different flue-cured tobacco cultivars were reduced significantly; the decreas-ing range of Yunyan 87 reached the minimum, fol owed by Bina 1, while Qianxi 1 demonstrated the maximum decreasing range. Leaf water-holding capacity of various flue-cured tobacco cultivars showed a descending order of Yunyan 87 〉 Bina 1 〉Qianxi 1 〉 Jiucaiping 2. MDA content and proline content in roots of various flue-cured tobacco cultivars increased significantly; to be specific, Yunyan 87 and Bina 1 exhibited a slight increase in root MDA content and a significant increase in root proline content, while Jiucaiping 2 and Qianxi 1 showed an opposite trend. Accord-ing to the results of comprehensive analysis with subordinate function method, drought resistance in various flue-cured tobacco cultivars showed a descending or-der of Yunyan 87 〉 Bina 1 〉 Jiucaiping 2 〉 Qianxi 1.展开更多
The water shortage faced with rice production in China was comprehensively analyzed,and the seasonal as well as spatial and temporal differences were the factors limiting rice production,which would be a severe test f...The water shortage faced with rice production in China was comprehensively analyzed,and the seasonal as well as spatial and temporal differences were the factors limiting rice production,which would be a severe test for grain production safety.Therefore,solving strategies had been proposed from the following aspects:the improvement of irrigation practices was of significant effect on improving the high efficient utilization of water;the screening of drought resistance cultivars and upland rice cultivation could also greatly improve the ability of drought resistance;the combination of traditional breeding techniques with modern transgenic technology as well as the QTL analysis had made considerable progress on improving the soil moisture productive potential of rice from the perspective of genetics.The development of China's rice industry would face greater water scarcity in the future,but the conventional water-saving technologies could only reduce water consume to a certain extent,while the exploration and improvement of the water saving potential of wetland rice to give full play to the biological water-saving function would become the goal of agricultural development in China.展开更多
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
基金supported by a grant of the Deutsche Forschungsgemeinschaft(DFGCRC1177 and joint DFG/ANR grant)(to CB)a fellowship of the Deutscher Akademischer Austauschdienst(DAAD)(to TNMP)。
文摘Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.
基金support from Region Stockholm,ALF-project(FoUI-960041)Open Access funding is provided by Karolinska Institute(both to IM)。
文摘Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFD1200503)Jiangsu Agriculture Science and Technology Innovation Fund[Grant No.CX(22)3046]+2 种基金the National Science Foundation of China(Grant No.32072538)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been identified in other species,such as Arabidopsis,Oryza sativa,and grapevine,few reports on pear ATL gene families have been reported.In this study,92 PbrATL genes were identified and analyzed from the Pyrus breschneideri genome.Motif analysis and phylogenetic tree generation divided them into nine subgroups,and chromosome localization analysis showed that the 92 PbrATL genes were distributed in 16 of 17 pear chromosomes.Transcriptome data and quantitative real-time polymerase chain reaction(qRT-PCR)experiments demonstrated that PbrATL18,PbrATL41,and PbrATL88 were involved in both pear drought resistance and Colletotrichum fructicola infection.In addition,Arabidopsis thaliana overexpressing PbrATL18 showed greater resistance to drought stress than the wild type(WT),and PbrATL18-silenced pear seedlings showed greater sensitivity to drought and C.fructicola infection than the controls.PbrATL18 regulated plant resistance by regulating chitinase(CHI),phenylalanine ammonia-lyase(PAL),polyphenol oxidase(PPO),catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD)activities.This study provided a reference for further exploring the functions of the PbrATL gene in drought resistance and C.fructicola infection.
基金supported by the National Key Research and Development Program of China(2019YFD1001300 and 2019YFD1001305)the Fundamental Research Funds for the Central Universities,China(SWUKQ22042)+1 种基金the China Agriculture Research System of MOF and MARA(CARS-08)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences。
文摘Genetic improvement of drought resistance is one of the main breeding goals for common bean,so molecular markers must be identified to facilitate drought resistance breeding.In this study,we evaluated the proline,trehalose,raffinose,and stachyose contents of 210 common bean accessions under two watering conditions and found large variations in all four.The coefficients of variation ranged from 21.21%for proline content to 78.69%for stachyose content under well-watered conditions,and from 20.11%for proline content to 50.08%for trehalose content under drought stress.According to our genome-wide association analysis,32 quantitative trait loci were associated with drought resistance,seven of which overlapped with known loci.Four hotspot regions were identified at Pv01,Pv07 and Pv11.A set of candidate genes was identified,including genes encoding MYB,bZIP,bHLH,ERF,and protein kinases.Among these genes,Phvul.001G189400,Phvul.007G273000 and Phvul.008G270500 were annotated as bZIP,ERF and WRKY,respectively.These genes are reportedly involved in drought stress responses in Arabidopsis thaliana and were induced by drought stress in common bean.Significant SNPs in six candidate gene regions formed different haplotypes,and phenotypic analysis revealed significant differences among the haplotypes.These results provide new insight into the genetic basis of drought resistance in common bean and reveal candidate genes and superior natural variations that will be useful for improving common bean.
基金supported jointly by the Science and Technology Project of Guizhou Province(Qian-Ke-He Platform Talents[2021]5624)the National Natural Science Foundation of China(31960576)Science and Technology Project of Guizhou Province(Qian-Ke-He Support[2021]General 228)were funded.
文摘In order to explore the response mechanism of Passiflora edulis Sims to drought stress,the changes in morpho-logical and physiological traits of Passiflora edulis Sims under different drought conditions were studied.A total of 7 germplasm resources of Passiflora edulis Sims were selected and tested under drought stress by the pot culture method under 4 treatment levels:75%–80%(Control,CK)of maximumfield water capacity,55%–60%(Light Drought,LD)of maximumfield water capacity,i.e.,mild drought,40%–45%(Moderate Drought,MD)of max-imumfield water capacity,i.e.,moderate drought and 30%–35%(Severe Drought,SD)of maximumfield water capacity,i.e.,severe drought.On the 40th day of drought treatment,13 indices,including seedling growth mor-phology,physiology,and biochemistry,were measured.The results showed that under drought stress,the height and ground diameter of P.edulis Sims gradually decreased with increasing drought stress,and there were signifi-cant differences in seedling height and ground diameter among the treatments.Drought stress significantly inhib-ited the growth of seven P.edulis Sims varieties.The contents of soluble sugar(SS),soluble protein(SP),proline(Pro),and other substances in P.edulis Sims basically increased with increasing drought stress.With the aggrava-tion of drought stress,the malondialdehyde(MDA)content of P.edulis Sims tended to increase to different degrees,the superoxide dismutase(SOD)activity and peroxidase(POD)activity both tended to increase atfirst and then decrease,and the change in catalase(CAT)activity mostly showed a gradual increasing trend.The con-tents of endogenous hormones in P.edulis Sims significantly differed under different degrees of drought stress.With the aggravation of drought stress,the abscisic acid(ABA)content of P.edulis Sims tended to increase,whereas the contents of gibberellin(GA),indoleacetic acid(IAA),and zeatin nucleoside(ZR)exhibited a down-ward trend.A comprehensive evaluation of the drought resistance of seven P.edulis Sims varieties was conducted based on the principal component analysis method,and the results showed that the drought resistance decreased in the order XH-BL>XH-TWZ>TN1>GH1>ZJ-MT>LP-LZ>DH-JW.
基金This research was funded and supported by the National Natural Science Foundation of China(Grant Number 32001443)Zhengzhou Major Science and Technology Innovation Project of Henan Province of China(Grant Number 2020CXZX0085)Science and Technology Inovation Team of Henan Academy of Agricultural Sciences(Grant Number 2024TD2).
文摘Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture.
基金supported by grants from the National Key Research and Development Program of China(2023YFF1000404,2022YFF10001501)the National Natural Science Foundation of China(32171971)。
文摘As an essential crop that provides vegetable oil and protein,soybean(Glycine max(L.)Merr.)is widely planted all over the world.However,the scarcity of water resources worldwide has seriously impacted on the quality and yield of soybean.To address this,exploring excellent genes for improving drought resistance in soybean is crucial.In this study,we identified natural variations of GmFNSII-2(flavone synthase II)significantly affect the drought resistance of soybeans.Through sequence analysis of GmFNSII-2 in 632 cultivated and 44 wild soybeans nine haplotypes were identified.The full-length allele GmFNSII-2^(C),but not the truncated allele GmFNSII-2^(A) possessing a nonsense nucleotide variation,increased enzyme activity.Further research found that GmDREB3,known to increase soybean drought resistance,bound to the promoter region of GmFNSII-2^(C).GmDREB3 positively regulated the expression of GmFNSII-2^(C),increased flavone synthase abundance and improved the drought resistance.Furthermore,a singlebase mutation in the GmFNSII-2^(C) promoter generated an additional drought response element(CCCCT),which had stronger interaction strength with GmDREB3 and increased its transcriptional activity under drought conditions.The frequency of drought-resistant soybean varieties with Hap 1(Pro:GmFNSII-2^(C))has increased,suggesting that this haplotype may be selected during soybean breeding.In summary,GmFNSII-2^(C) could be used for molecular breeding of drought-tolerant soybean.
文摘The planting areas of mung bean are mostly arid and semi-arid areas, and lack of irrigation conditions. Many studies have reported that fertilization can increase drought resistance. In our previous research, optimized nitrogen (N), phosphorus (P) and potassium (K) combined fertilization model was established in mung bean. In the present study, the optimal fertilization was conducted in pot trails, and mung bean varieties Bailv9 and Bailv11 were used as materials, while the four water regimes, and three fertilization ratios of F120 (optimal fertilization), F100 (conventional fertilization), F50 (half of conventional fertilization) treatments were set, to compare each fertilization ratio effects and non-fertilization condition under each water regimes respectively. Under different water conditions, the investigation of N, P, and K effects of optimal fertilization showed that the yield of Bailv9 was not sensitive to water stress and had strong drought resistance;their water sensitivity index and drought resistance coefficient were BaiLv9 as Di = 0.89 and DC = 0.79. The yield of Bailv11 was sensitive to water stress, and their drought resistance was weak;their water sensitivity index and drought resistance coefficient were BL11 Di = 1.76 DC = 0.59, and under different water treatment conditions, Bailv9 and Bailv11 all had the best yield and other related traits increase in the F120 fertilization mode compared with other fertilization and non-fertilization conditions, and the average yield increases were 31.56% and 28.08%, respectively. The pot trails conduct the drought stress treatments in mung bean varieties Bailv9, Bailv11, Bailv935 and Bailv985 to determine the function of NPK optimized fertilization for improving plants growth in drought stress condition. Compared with the mung bean varieties treated with F50, F100, and F120, the yield of Bailv9 increased by 56.20%, 81.27%, and 107.22%, respectively;compared with that of F0, the yield of Bailv11 increased by 10.18%, 19.42%, and 45.88%, respectively;Bailv935 increased by 26.52%, 61.90%, 74.16% respectively, and Bailv985 increased by 23.78%, 56.92%, 87.62% respectively. The significant performances of optimized fertilization were also verified in 20 mung bean varieties in our filed trails. The research establishes a theoretical basis for introducing the model into production practice in the next step.
基金supported by the Fundamental Research Funds for the Central Universities,South-Central Minzu University,China(Grant No.CZY23002)Hubei Province Natural Science Foundation of China(Grant No.2019CFB804).
文摘A rice cyclase gene,OsCYL4b,identified as an alternative splice variant of the cyclase gene OsCYL4a,is involved in the regulation of drought stress and oxidative response.Compared with OsCYL4a,OsCYL4b lacks the second exon,which is located in the conserved motif 3,and may be a functionally important site.Our results suggested that OsCYL4b was responsive to multiple abiotic stresses,and was localized to both the cytoplasm and plasma membrane.The overexpression of OsCYL4b resulted in significantly enhanced drought and osmotic stress tolerance,reduced water loss,and increased abscisic acid(ABA)content compared with the wild type(WT).
基金the National Ministry of Science and Technology Key Project(2018YFE0123300)the National Modern Agricultural Wheat Industry Technology System Keshan Comprehensive Test Station(CARS‒03‒54)the Collaborative Innovation and Extension System of Modern Agricultural Wheat in Heilongjiang Province。
文摘In order to determine the physiological mechanism of drought resistance of northern wheat in China,six drought resistant wheat and one sensitivity to drought wheat were planted in pots.They were subjected to drought treatment and normal water when the plants grew to the 3-leaf stage.Samples were collected at 10,20,30,and 40 days after the drought treatment,respectively.The electrical conductivity,photosynthetic parameters,chlorophyll fluorescence parameters,sugar content,proline content,protein content,and active oxygen scavenging enzyme activity of the plants were detected,and the agronomic traits of the wheat varieties were investigated at maturity.The results indicated that the phenotype and yield-related factors of Darkhan 144 changed little under the drought stress.The relative electrical conductivity of Kefeng 6 and Darkhan 166 was lower under the drought stress,and their cell membrane was less damaged.The Darkhan 144 and Darkhan 166 had higher drought resistance coefficients,and were the wheat varieties with stronger drought resistance.However,the physiological mechanisms of drought resistance of these three wheat were different:Darkhan 144 maintained a higher photosynthetic activity under the drought stress;Darkhan 166 maintained a higher protein content,photosynthetic activity and active oxygen scavenging enzyme activity.In addition,other drought-resistant varieties Kefeng 6,Kefeng 10 and Longmai 26 had a higher content of osmoregulatory substances under the drought stress.
基金Supported by Special Fund for Bagui Scholars of Guangxi Zhuang Autonomous RegionNational Science and Technology Support Program of China (2012BAD40B04,2013BAD01B02-17)+3 种基金Project for Scientific Research and Technological Development of Guangxi Zhuang Autonomous Region (GKG1123001-3C)Youth Fund of Guangxi Zhuang Autonomous Region(2013GXNSFBA019052,2013GXNSFAA019054)Fund for Science and Technology Development of Guangxi Academy of Agricultural Sciences(GNK2014JQ13)Special Fund for Basic Scientific Research of Guangxi Academy of Agricultural Sciences(2013YT05)~~
文摘This study aimed to screen drought stress indicators and analyze the drought resistance in 105 cultivated rice germplasm resources in Guangxi Zhuang Autonomous Region under drought stress in the whole growth period based on D value of seven morphological traits including panicle neck thickness,effective panicle number per plant,1 000-grain weight,filled grain number per panicle,total grain number,seed setting rate and yield per plant.According to the results,under drought stress,yield per plant exhibited significant positive correlation with panicle neck thickness and exhibited extremely significant positive correlation with other five morphological traits.Based on the identification and evaluation of comprehensive drought-resistance index D value,seven highly drought-resistant cultivated rice varieties were screened,accounting for 6.67%.Upland rice germplasm resources in Guangxi Zhuang Autonomous Region possess strong drought-resistance capacity,which could be used to screen highly drought-resistant rice germplasm materials.This study provided material basis and theoretical reference for breeding drought resistant rice cultivars in Guangxi Zhuang Autonomous Region.
基金Support by National Natural Science Foundation of China(30671214)Scientific and Technological Project of Henan Province~~
文摘[Objective]The aim was to study the response mechanism of drought stress of wheat varieties in different drought-resistance species,and protect the effect of exogenous NO on oxidative damage and photosynthetic apparatus of wheat leaves under drought stress.[Method]Using low-resistance Yumai 949 and high-resistance Xiamai 5 as test materials,drought stress was carried out to seedlings in five-leaf stage with 15% PEG-6000,and then NO(0.75 mmol/L SNP,sodium nitroprusside,exogenous NO donor) was used for regulation in drought condition,and antioxidant and photosynthetic activities was determined.Three treatments were set in the experiment.[Result]SOD,CAT and APX activities of high resistance Xiamai 5 were much higher than low resistance Yumai 949,so were MDA and chlorophyll content.And the change range of these physiological indexes of high resistance species was smaller than high-yielding and low resistance species under drought stress.NO increased the adaptation to drought stress of these physiological indexes significantly.[Conclusion]Exogenous NO could increase the activity of antioxidant enzymes of wheat leaves under drought stress,and enhance the drought resistance of wheat.
基金Supported by the Earmarked Fund for China Agriculture Research(CARS-07-12.5-A12)Shanxi Agricultural Sciences Program(2013gg20)~~
文摘In order to clarify drought resistance of proso millet applied in field production in Shanxi, we identified its drought resistance during the whole growth period and measured nine traits, including plant height, panicle length, stem diameter, panicle weight, grain weight per spike, straw weight per plant, node numbers of main stem, 1 000-grain weight and effective panicles, under different treatments. Principal component analysis and stepwise regression analysis were used for comprehensive evaluation of drought resistance during the whole growth period and screening the drought index. The results showed that there were correlations among 9 phenotypic traits. The coefficient of variation of panicle weight and straw weight per plant sharply reduced under normal water supply and drought stress. Landrace "yellow millet" had the strongest drought resistance(D =0.87), integrated drought D value and membership function value of yield had significant correlation(r =0.515 9, P〈0.05). Panicle weight and straw weight per plant had significant impact on drought resistance and could be taken as comprehensive indexes of drought resistance identification in growth period.
基金Supported by Science and Technology Project for National Food Production(2011BAD16BO5-1)Special Fund for Scientific Research in the Public Interest(201203029)+2 种基金Financial Genetic Engineering Program of Sichuan ProvinceSouthwestern China Rice Innovation System ProjectSichuan Provincial Financial Program~~
文摘[Objective] This study aimed to investigate the correlations between the drought tolerance and plant traits of hybrid rice, so as to provide theoretical basis for the breeding of drought-tolerant rice varieties. [Method] In the field experiment in 2011, 30 hybrid rice cultivars were grown under three different conditions: drought at til ering stage, drought at panicle initiation stage and control (keeping shal ow wa-ter during the whole growth period). Then, the main plant traits were measured, and the related drought tolerance indices were calculated. In 2012, 16 hybrid rice culti-vars were grown in pots under drought and normal water conditions respectively. And their main plant traits were measured, and the related drought tolerance indices were also calculated. [Result] The water content in soil under drought stress at til ering stage was nearly 60%, and that under drought stress at panicle initiation stage was 80%. Such low water content significantly reduced the rice yield. The cultivars with large panicle and great root growth potential had strong drought toler-ance at panicle initiation stage. Under drought stress, the cultivars with higher yield had stronger tolerance to drought. The drought tolerance indices at til ering stage had no correlations with those at panicle initiation stage. Under normal water condi-tions, the cultivars with smal er 1 000-grain weight had stronger tolerance to drought . Under drought stress , the cultivars with smal er 1 000-grain weight and higher grain yield had stronger tolerance to drought. [Conclusion] Among al the rice cultivars tested in the present study, D You 6511, Taiyou 99, Nei 5 You 317, Neixiangyou 18, Yixiangyou 7633, Tianyouhuazhan, II You 615, Neixiang 5306, Chuanguyou 7329 and Neixiang 7539 exhibited better tolerance to drought, and thus can be promoted in production.
基金Supported by National Nonprofit Institute Research Grant(BRF090202)~~
文摘[Objective] This study was to reveal the correlation between leaf area and drought resistance in different varieties of alfalfa.[Method] Using various alfalfa varieties as experimental materials,the drought resistance of leaves of drought-stressed alfalfa plants was assessed by measuring the content of free proline for analyzing its correlation with leaf area.[Result] Under drought condition,the drought resistance of alfalfa is directly related to leaf area in a positive correlation.[Conclusion] Leaf area could be used as an institutional assistant index to reflect the resistance of different alfalfa varieties.
基金Supported by Yunnan Key New Product Development and Planning Program(2009BB006)~~
文摘In order to study olive’s drought resistance in Yunnan province, different varieties of olive trees from Albania, Italy, Spain and Greece were cultured, and leaves from these trees in drought season and rainy season were col ected and determined by physiological indices, such as proline content, relative electric con-ductivity, binding water/free water, relative water content and malon-dialdehyde in leaves. The evaluation of drought resistance with subordinate function showed that:There were no significant differences among drought resistances of varieties and provenances. The change of physiological indices in different varieties showed differ-ent ranges. The drought resistance of seven varieties decreased in order as fol ows:Koroneiki〉 Picual〉 Berat〉 Kaliniot〉 Frantoio〉 Coratina〉 Arbequina.
基金Supported by Science and Technology Project of Bijie Subsidiary of Guizhou Tobacco Company"Study on In-depth Searching and Supporting Techniques of Distinctive Fluecured Tobacco Cultivars in Bijie"~~
文摘Based on pot experiments, major agronomic traits, biomass accumulation, leaf water-holding capacity, relative water content, root MDA content, root proline content and other physiological indicators of four different flue-cured tobacco culti-vars under drought stress were investigated, and drought resistance in various flue-cured tobacco cultivars was comprehensively analyzed with subordinate function method, aiming at clarifying the differences in drought resistance among various flue-cured tobacco cultivars. The results indicated that under drought stress, major agronomic traits, fresh and dry mass accumulation, and leaf relative water content of four different flue-cured tobacco cultivars were reduced significantly; the decreas-ing range of Yunyan 87 reached the minimum, fol owed by Bina 1, while Qianxi 1 demonstrated the maximum decreasing range. Leaf water-holding capacity of various flue-cured tobacco cultivars showed a descending order of Yunyan 87 〉 Bina 1 〉Qianxi 1 〉 Jiucaiping 2. MDA content and proline content in roots of various flue-cured tobacco cultivars increased significantly; to be specific, Yunyan 87 and Bina 1 exhibited a slight increase in root MDA content and a significant increase in root proline content, while Jiucaiping 2 and Qianxi 1 showed an opposite trend. Accord-ing to the results of comprehensive analysis with subordinate function method, drought resistance in various flue-cured tobacco cultivars showed a descending or-der of Yunyan 87 〉 Bina 1 〉 Jiucaiping 2 〉 Qianxi 1.
文摘The water shortage faced with rice production in China was comprehensively analyzed,and the seasonal as well as spatial and temporal differences were the factors limiting rice production,which would be a severe test for grain production safety.Therefore,solving strategies had been proposed from the following aspects:the improvement of irrigation practices was of significant effect on improving the high efficient utilization of water;the screening of drought resistance cultivars and upland rice cultivation could also greatly improve the ability of drought resistance;the combination of traditional breeding techniques with modern transgenic technology as well as the QTL analysis had made considerable progress on improving the soil moisture productive potential of rice from the perspective of genetics.The development of China's rice industry would face greater water scarcity in the future,but the conventional water-saving technologies could only reduce water consume to a certain extent,while the exploration and improvement of the water saving potential of wetland rice to give full play to the biological water-saving function would become the goal of agricultural development in China.
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.