T-cell acute lymphoblastic leukemia(T-ALL),a heterogeneous hematological malignancy,is caused by the developmental arrest of normal T-cell progenitors.The development of targeted therapeutic regimens is impeded by poo...T-cell acute lymphoblastic leukemia(T-ALL),a heterogeneous hematological malignancy,is caused by the developmental arrest of normal T-cell progenitors.The development of targeted therapeutic regimens is impeded by poor knowledge of the stage-specific aberrances in this disease.In this study,we performed multi-omics integration analysis,which included mRNA expression,chromatin accessibility,and gene-dependency database analyses,to identify potential stage-specific druggable targets and repositioned drugs for this disease.This multi-omics integration helped identify 29 potential pathological genes for T-ALL.These genes exhibited tissue-specific expression profiles and were enriched in the cell cycle,hematopoietic stem cell differentiation,and the AMPK signaling pathway.Of these,four known druggable targets(CDK6,TUBA1A,TUBB,and TYMS)showed dysregulated and stage-specific expression in malignant T cells and may serve as stage-specific targets in T-ALL.The TUBA1A expression level was higher in the early T cell precursor(ETP)-ALL cells,while TUBB and TYMS were mainly highly expressed in malignant T cells arrested at the CD4 and CD8 double-positive or single-positive stage.CDK6 exhibited a U-shaped expression pattern in malignant T cells along the naıve to maturation stages.Furthermore,mebendazole and gemcitabine,which target TUBA1A and TYMS,respectively,exerted stage-specific inhibitory effects on T-ALL cell lines,indicating their potential stage-specific antileukemic role in T-ALL.Collectively,our findings might aid in identifying potential stage-specific druggable targets and are promising for achieving more precise therapeutic strategies for T-ALL.展开更多
Autophagy is a critical cellular homeostatic mechanism,and its dysfunction is linked to invasive breast carcinoma(BRCA).Recently,several omics methods have been applied to explore autophagic regulators in BRCA;however...Autophagy is a critical cellular homeostatic mechanism,and its dysfunction is linked to invasive breast carcinoma(BRCA).Recently,several omics methods have been applied to explore autophagic regulators in BRCA;however,more reliable and robust approaches for identifying crucial regulators and druggable targets remain to be discovered.Thus,we report here the results of multi-omics approaches to identify potential autophagic regulators in BRCA,including gene expression(EXP),DNA methylation(MET)and copy number alterations(CNAs)from The Cancer Genome Atlas(TCGA).Newly identified candidate genes,such as SF3 B3,TRAPPC10,SIRT3,MTERFD1,and FBXO5,were confirmed to be involved in the positive or negative regulation of autophagy in BRCA.SF3 B3 was identified firstly as a negative autophagic regulator,and siRNA/shRNA-SF3 B3 were shown to induce autophagyassociated cell death in in vitro and in vivo breast cancer models.Moreover,a novel small-molecule activator of SIRT3,1-methylbenzylamino amiodarone,was discovered to induce autophagy in vitro and in vivo.Together,these results provide multi-omics approaches to identify some key candidate autophagic regulators,such as the negative regulator SF3 B3 and positive regulator SIRT3 in BRCA,and highlight SF3 B3 and SIRT3 as new druggable targets that could be used to fill the gap between autophagy and cancer drug development.展开更多
基金the National Natural Science Foundation of China(No.82070167,81870126,81900190,81802803)The Chongqing Science and Technology Bureau Major Project,Chongqing,China(No.cstc2020jcyjmsxmX0782).
文摘T-cell acute lymphoblastic leukemia(T-ALL),a heterogeneous hematological malignancy,is caused by the developmental arrest of normal T-cell progenitors.The development of targeted therapeutic regimens is impeded by poor knowledge of the stage-specific aberrances in this disease.In this study,we performed multi-omics integration analysis,which included mRNA expression,chromatin accessibility,and gene-dependency database analyses,to identify potential stage-specific druggable targets and repositioned drugs for this disease.This multi-omics integration helped identify 29 potential pathological genes for T-ALL.These genes exhibited tissue-specific expression profiles and were enriched in the cell cycle,hematopoietic stem cell differentiation,and the AMPK signaling pathway.Of these,four known druggable targets(CDK6,TUBA1A,TUBB,and TYMS)showed dysregulated and stage-specific expression in malignant T cells and may serve as stage-specific targets in T-ALL.The TUBA1A expression level was higher in the early T cell precursor(ETP)-ALL cells,while TUBB and TYMS were mainly highly expressed in malignant T cells arrested at the CD4 and CD8 double-positive or single-positive stage.CDK6 exhibited a U-shaped expression pattern in malignant T cells along the naıve to maturation stages.Furthermore,mebendazole and gemcitabine,which target TUBA1A and TYMS,respectively,exerted stage-specific inhibitory effects on T-ALL cell lines,indicating their potential stage-specific antileukemic role in T-ALL.Collectively,our findings might aid in identifying potential stage-specific druggable targets and are promising for achieving more precise therapeutic strategies for T-ALL.
基金supported by grants from National Science and Technology Major Project of the Ministry of Science and Technology of the People’s Republic of China(No.2018ZX09735005)National Natural Science Foundation of China(Grant Nos.81522028,81673452,81673455,81873939,81803365 and 81602953)+2 种基金Post-Doctor Research Project(2018M643510,China)Post-Doctor Research Project of West China Hospital,Sichuan University(Grant No.2018HXBH065,China)supported by the grant from“The Recruitment Program of Global Young Experts”(known as“the Thousand Young Talents Plan”,China)。
文摘Autophagy is a critical cellular homeostatic mechanism,and its dysfunction is linked to invasive breast carcinoma(BRCA).Recently,several omics methods have been applied to explore autophagic regulators in BRCA;however,more reliable and robust approaches for identifying crucial regulators and druggable targets remain to be discovered.Thus,we report here the results of multi-omics approaches to identify potential autophagic regulators in BRCA,including gene expression(EXP),DNA methylation(MET)and copy number alterations(CNAs)from The Cancer Genome Atlas(TCGA).Newly identified candidate genes,such as SF3 B3,TRAPPC10,SIRT3,MTERFD1,and FBXO5,were confirmed to be involved in the positive or negative regulation of autophagy in BRCA.SF3 B3 was identified firstly as a negative autophagic regulator,and siRNA/shRNA-SF3 B3 were shown to induce autophagyassociated cell death in in vitro and in vivo breast cancer models.Moreover,a novel small-molecule activator of SIRT3,1-methylbenzylamino amiodarone,was discovered to induce autophagy in vitro and in vivo.Together,these results provide multi-omics approaches to identify some key candidate autophagic regulators,such as the negative regulator SF3 B3 and positive regulator SIRT3 in BRCA,and highlight SF3 B3 and SIRT3 as new druggable targets that could be used to fill the gap between autophagy and cancer drug development.