期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Dry sliding wear behavior and mechanism of AM60B alloy at 25-200 ℃ 被引量:2
1
作者 杨子润 魏敏先 +1 位作者 赵玉涛 王树奇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2584-2591,共8页
Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under t... Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces. 展开更多
关键词 magnesium alloy dry sliding wear OXIDATION tribo-layer wear mechanism
下载PDF
Dry sliding wear behavior of rheocast hypereutectic Al-Si alloys with different Fe contents 被引量:1
2
作者 林冲 吴树森 +2 位作者 吕书林 曾劲彪 安萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期665-675,共11页
The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The resu... The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The results show that the wear rate of the rheocast alloy is lower than that of the alloy produced by conventional casting process under the same applied load. The fine particle-likeδ-Al4(Fe,Mn)Si2 and polygonalα-Al15(Fe,Mn)3Si2 phases help to improve the wear resistance of rheocast alloys. As the volume fraction of fine Fe-bearing compounds increases, the wear rate of the rheocast alloy decreases. Moreover, the wear rate of rheocast alloy increases with the increase of applied load from 50 to 200 N. For the rheocast alloy with 3% Fe, oxidation wear is the main mechanism at low applied load (50 N). At higher applied loads, a combination of delamination and oxidation wear is the dominant wear mechanism. 展开更多
关键词 dry sliding wear hypereutectic Al-Si alloy RHEOCASTING Fe-bearing compound wear mechanism
下载PDF
Microstructure and dry sliding wear behavior of cast Al-Mg_2Si in-situ metal matrix composite modified by Nd 被引量:20
3
作者 Xiao-Feng Wu Guan-Gan Zhang Fu-Fa Wu 《Rare Metals》 SCIE EI CAS CSCD 2013年第3期284-289,共6页
The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, bo... The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd. 展开更多
关键词 Al/Mg2Si composites Nd modification MICROSTRUCTURE dry sliding wear behavior
下载PDF
Dry sliding wear behavior of AA6061/ZrB_2 in-situ composite 被引量:7
4
作者 I.DINAHARAN N.MURUGAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期810-818,共9页
The dry sliding wear behavior of AA6061/ZrB2 in-situ composite prepared by the reaction of inorganic salts K2ZrF6 and KBF4 with molten aluminum was investigated.An attempt was made to develop a mathematical model to p... The dry sliding wear behavior of AA6061/ZrB2 in-situ composite prepared by the reaction of inorganic salts K2ZrF6 and KBF4 with molten aluminum was investigated.An attempt was made to develop a mathematical model to predict the wear rate of AA6061/(0-10%) ZrB2 in-situ composites.Four-factor,five-level central composite rotatable design was used to minimize the number of experiments.The factors considered are sliding velocity,sliding distance,normal load and mass fraction of ZrB2 particles.The effect of these factors on the wear rate of the fabricated composite was analyzed and the predicted trends were discussed by observing the wear surface morphologies.The in-situ formed ZrB2 particles enhance the wear performance of the composite.The wear rate of the composite bears a proportional relationship with the sliding velocity,sliding distance and normal load. 展开更多
关键词 aluminum matrix composites ZRB2 dry sliding wear mathematical model
下载PDF
Wear mechanism for spray deposited Al-Si/SiC_p composites under dry sliding condition 被引量:6
5
作者 滕杰 李华培 陈刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2875-2882,共8页
Al-Si/15%SiCp(volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy(OM). Dry slid... Al-Si/15%SiCp(volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy(OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10-220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy(SEM) and energy-dispersive X-ray microanalysis(EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear. 展开更多
关键词 dry sliding wear wear mechanism Al-Si/SiC_p composites spray deposition
下载PDF
Dry sliding wear behavior of Al_2O_3 fiber and SiC particle reinforced aluminium based MMCs fabricated by squeeze casting method 被引量:5
6
作者 王一奇 宋正日 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1441-1448,共8页
Al2O3 fiber (Al2O3f) and SiC particle (SiCp) hybrid metal matrix composites (MMCs) were fabricated by squeeze casting method.The tests were carried out using a pin-on-disk friction and wear tester by sliding the... Al2O3 fiber (Al2O3f) and SiC particle (SiCp) hybrid metal matrix composites (MMCs) were fabricated by squeeze casting method.The tests were carried out using a pin-on-disk friction and wear tester by sliding these pin specimens at a constant speed of 0.36 m/s (570 r/min) against a steel counter disk at room temperature,100 C and 150 C,respectively.To observe the wear characteristics and investigate the wear mechanism,the morphologies of the worn surfaces and specific wear rate were analyzed by using scanning electron microscope (SEM) and Arrhenius plots.Moreover,the effects of fiber orientation and hybrid ratio were discussed. 展开更多
关键词 metal matrix composites dry sliding wear wear resistance friction of coefficient
下载PDF
Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites 被引量:3
7
作者 Sareh MOSLEH-SHIRAZI Farshad AKHLAGHI Dong-yang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1801-1808,共8页
The corrosion, corrosive wear and dry sliding wear of nanocomposites, are extremely complicated and involve various chemical, physical anbd mechanical factors. The aim of this work is to investigate the effects of nan... The corrosion, corrosive wear and dry sliding wear of nanocomposites, are extremely complicated and involve various chemical, physical anbd mechanical factors. The aim of this work is to investigate the effects of nanosized SiC content on the hardness, dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites synthesized by mechanical milling cold pressing and hot extrusion. The corrosion resistance of these composites in 3%NaCl solution was investigated by electrochemical polarization testing and their dry sliding as well as corrosive wear resistance in the same solution was evaluated using a pin-on-disc tester. The microstructures of the samples and their worn surfaces were examined using scanning electron microscopy. It was shown that the dry sliding wear and corrosion resistance of these nanocomposites were improved with the increase of SiC content. It was concluded that due to the lubrication effect of the solution, both the friction coefficient and frictional heat that might soften the material were reduced. In addition, the improved strength of the nanocomposites combined with their better corrosion resistance contributed to their increased corrosive wear resistance, compared with the base alloy. The prominent wear mechanism in the unreinforced alloy was adhesive wear, in the Al/SiC nanocomposites, the wear mechanism changed to abrasive. 展开更多
关键词 Al 6061 SIC NANOCOMPOSITE mechanical milling CORROSION dry sliding wear corrosive wear
下载PDF
Comparative study on tribological properties of isostatic graphite and carbon graphite under dry sliding and water-lubricated conditions 被引量:3
8
作者 Ding Hongqin Jiang Shuyun 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期273-277,共5页
The tribological properties of isostatic graphite and carbon graphite under dry sliding and water lubricated conditions were studied.The friction test was conducted by using a pin-on-disc tribometer.The friction coeff... The tribological properties of isostatic graphite and carbon graphite under dry sliding and water lubricated conditions were studied.The friction test was conducted by using a pin-on-disc tribometer.The friction coefficient and the wear rate were employed to evaluate the tribological performances of the two materials,and wear morphology was used to analyze the wear mechanism.The results show that the friction coefficient of the isostatic graphite is larger than that of the carbon graphite under the dry sliding condition,and the wear rate is lower than that of the carbon graphite.Under the water lubricated condition,the friction coefficients and the wear rates of the isostatic graphite decrease obviously.The main wear form of the isostatic graphite is abrasive wear,while the main wear form of the carbon graphite is spalling wear.Finally,the tribological mechanism of the isostatic graphite under dry sliding and water lubricated conditions were systematically analyzed. 展开更多
关键词 isostatic graphite carbon graphite friction and wear water lubrication dry sliding
下载PDF
Effect of solidification process parameters on dry sliding wear behavior of AlNiBi alloy 被引量:2
9
作者 T.M.BOTELHO H.M.AZEVEDO +4 位作者 G.H.MACHADO C.R.BARBOSA F.S.ROCHA T.A.COSTA O.L.ROCHA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第3期582-594,共13页
As-cast samples of the Al-3wt.%Ni-lwt.%Bi alloy resulting from the horizontal directional solidification process were subjected to the micro-abrasive wear test.The effects of the solidification thermal and microstruct... As-cast samples of the Al-3wt.%Ni-lwt.%Bi alloy resulting from the horizontal directional solidification process were subjected to the micro-abrasive wear test.The effects of the solidification thermal and microstructural parameters,such as the growth and cooling rates and the cellular and primary dendritic spacings(VL and TR;λ1 and λc;respectively),were evaluated in the wear resistance of the investigated alloy.The tribological parameters analyzed were the wear volume and rate(Vw and Rw).The solidification experiments and the wear tests were carried out by means of a water-cooled horizontal directional solidification device and a rotary-fixed ball wear machine,respectively.The results show lower Vw and Rw values correspond to finer microstructures and the Vw dependence on λ1 is characterized by an experimental mathematical equation.A better distribution of Bi soft droplets and Al3Ni hard intermetallic particles is observed within the finer interdendritic region and,in consequence,the better wear resistance is achieved in as-cast samples with dendritic morphology rather than cellular morphology.A transition of wear mechanism from adhesive to abrasive is observed. 展开更多
关键词 unsteady-state horizontal solidification dry sliding wear cellular/dendrite arm spacing MICROHARDNESS Bi particle Al_(3)Ni particle
下载PDF
COMPOSITION EFFECT ON DRY SLIDING WEAR BEHAVIORS OF Ti-B-N THIN FILMS
10
作者 P.Sit Y.H.Lu +3 位作者 H.Chen Z.F.Zhou Y.G.Shen K.Y.Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第3期300-306,共7页
Friction and sliding wear behaviour of Ti-B-N coatings against AISI440C steel ba ll and WC-6wt%Co ball were studied by using pin-on-disk tribometer along with mi crostructure characterization using optical microscopy ... Friction and sliding wear behaviour of Ti-B-N coatings against AISI440C steel ba ll and WC-6wt%Co ball were studied by using pin-on-disk tribometer along with mi crostructure characterization using optical microscopy (OM), scanning electron m icroscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the wear resistance of film depended on the wear mechanism. In the case of AISI440C steel, adhesive wear were pre-dominant and the wear rate increased sharply to a maximum when N content reach ~38at.%. This might be related to the change of fi lm microstructure and phase configuration, so the least adhesive transfer of tri bo-film was observed. If WC-6wt%Co ball was used, less deformation wear debris w as observed, this was responsible for the rise of wear rate. Despite of differen t wear modes, friction coefficients in both cases were found to depend mainly on the formation and the amount of h-BN phase. Elemental analysis by energy disper sive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) revealed that oxygen participated in the wear behavior by reacting with films to form the deb ris comprised of various types of Ti oxide including TiO, TiO2 and Ti2O3 , which increased wear resistance. 展开更多
关键词 dry sliding wear friction coefficient OXIDATION Ti-B-N WEAR
下载PDF
Dry Friction Characteristics of Ti-6Al-4V Alloy under High Sliding Velocity
11
作者 邱明 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期582-585,共4页
Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribomet... Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribometer under unlubricated conditions. The wear mechanisms and the wear transition were analyzed based on examinations of worn surfaces using SEM, EDS and XRD. When the velocity increases, the friction coefficient and the wear rate of the Ti-6Al-4V alloy show typical transition features, namely, the critical values of sliding velocities for 0.33 and 0.67 MPa are 60 and 40 m/s, respectively. The experimental results reveal that the tribological behaviours of Ti-6Al-4V alloys are controlled by the thermal-mechanical effects, which connects with the friction heat and hard particles of the pairs. A tribolayer containing mainly Ti oxides and V oxides is formed on the worn surface of Ti-6Al-4V alloy. 展开更多
关键词 Ti alloy dry sliding friction behavior contact temperature wear mechanism
下载PDF
Tribological characteristics of compacted graphite cast iron in dry sliding condition
12
作者 CHEN Yue ZHANG Yong-zhen ZHANG Ran-yang 《China Foundry》 SCIE CAS 2006年第1期16-25,共10页
The dry sliding wear and friction behaviors of compacted graphite cast iron (C. G. iron) were analyzed. The influence of the operating conditions (i.e. velocity,pressure), chemical composition and microstructure on th... The dry sliding wear and friction behaviors of compacted graphite cast iron (C. G. iron) were analyzed. The influence of the operating conditions (i.e. velocity,pressure), chemical composition and microstructure on the dry sliding tribological characteristics of the cast iron was studied. The 3-D topographical properties and wear surface temperature characteristics of C. G. iron were discussed. The results suggested that, compared with spheroidal graphite cast iron (S. G. iron) and grey cast iron, C. G. iron has the lowest wear rate,the highest friction coefficient, the lowest attenuation quantity in friction coefficient and is suitable for brake materials. The wear resistance and friction coefficient of C. G. iron can be substantially increased by introducing alloy elements such as phosphorus. The good tribological properties of C. G. iron under dry sliding condition have been further explained from mechanism by analyzing the 3-D surface topography and temperature field of dry sliding surface of specimen. 展开更多
关键词 C. G. iron dry sliding friction-wear TRIBOLOGY
下载PDF
Characteristics of Deformation Layer for Vermicular Iron under Dry Sliding Friction
13
作者 SUN Le-min SHANG Guan-bao +1 位作者 ZHANG Yong-zhen CHEN Yue 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2004年第3期44-47,共4页
At room temperature,dry sliding wear tests were carried out using pin-on-disc test rig,in which the pin is made of vermicular iron and the disc is made of 40 Cr steel.The microstructures of the frictional surfaces for... At room temperature,dry sliding wear tests were carried out using pin-on-disc test rig,in which the pin is made of vermicular iron and the disc is made of 40 Cr steel.The microstructures of the frictional surfaces for the pin specimens were investigated.Under the action of both frictional heat and frictional shearing stress,aplastic deformation layer under the frictional surface is formed.The morphology and properties of the plastic deformation layer depend on specimen material,contact pressure and frictional shearing stress.In the plastic deformation layer,the phosphorous mass percent varies at different depth and results in different hardness.On the outer side of surface,the hardness is the biggest and the phosphorous mass percent is the highest.They become gradually small from outer side to inner side of the surface. 展开更多
关键词 vermicular iron dry sliding plastic deformation layer
下载PDF
Effect of individual and combined additions of Al-5Ti-B,Mn and Sn on sliding wear behavior of A356 alloy 被引量:6
14
作者 邱科 王日初 +3 位作者 彭超群 王乃光 蔡志勇 张纯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期3886-3892,共7页
The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microsc... The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance. 展开更多
关键词 A356 aluminum alloy dry sliding WEAR grain refinement MANGANESE TIN
下载PDF
Sliding wear characteristics of solid lubricant coating on titanium alloy surface modified by laser texturing and ternary hard coatings 被引量:10
15
作者 M.PREM ANANTH R.RAMESH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期839-847,共9页
Titanium alloys are poor in wear resistance and it is not suitable under sliding conditions even with lubrication because ofits severe adhesive wear tendency.The surface modifications through texturing and surface coa... Titanium alloys are poor in wear resistance and it is not suitable under sliding conditions even with lubrication because ofits severe adhesive wear tendency.The surface modifications through texturing and surface coating were used to enhance the surfaceproperties of the titanium alloy substrate.Hard and wear resistant coatings such as TiAlN and AlCrN were applied over texturedtitanium alloy surfaces with chromium as interlayer.To improve the friction and wear resisting performance of hard coatings further,solid lubricant,molybdenum disulphide(MoS2),was deposited on dimples made over hard coatings.Unidirectional sliding weartests were performed with pin on disc contact geometry,to evaluate the tribological performance of coated substrates.The tests wereperformed under three different normal loads for a period of40min at sliding velocity of2m/s.The tribological behaviours ofmulti-layer coatings such as coating structure,friction coefficient and specific wear rate were investigated and analyzed.The lowerfriction coefficient of approximately0.1was found at the early sliding stage,which reduces the material transfer and increases thewear life.Although,the friction coefficient increased to high values after MoS2coating was partially removed,substrate was stillprotected against wear by underlying hard composite layer. 展开更多
关键词 surface texturing chromium interlayer hard coating molybdenum disulphide dry sliding
下载PDF
Application of ultra-smooth composite diamond film coated WC-Co drawing dies under water-lubricating conditions 被引量:5
16
作者 沈彬 孙方宏 +2 位作者 张志明 沈荷生 郭松寿 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期161-169,共9页
A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho... A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies. 展开更多
关键词 CVD diamond coated drawing die ultra-smooth composite diamond(USCD) film friction properties water-lubricating drawing dry sliding water lubrication
下载PDF
Tribological behaviour of AZ71E alloy at high temperatures 被引量:1
17
作者 黄伟九 林强 刘成龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2057-2065,共9页
Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results... Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results indicate that the wear rate increases with the increase of applied load and sliding distance, whereas the friction coefficient decreases with the increase of applied load. Scanning electron microscopy and optical microscopy studies on the worn surfaces and sub-surfaces show that the predominant wear mechanism is abrasion at low applied loads. The mild delamination wear accompanying with adhesion wear is the predominant wear mechanism under high applied loads at 150 ℃, whereas the severe delamination and melting wear are the predominant wear mechanisms under high applied load at 200 ℃. An investigation of the microstructure, thermal stability and tensile properties at high temperatures, using the optical microscopy, X-ray diffraction, differential scanning calorimetry, shows that the dominant secondary phase in AZ71E alloy, Al11Ce3, leads to the improvement in the tensile and elongation properties of alloy at high temperatures, which results in the improvement in the anti wear performance. 展开更多
关键词 magnesium alloy dry sliding wear high temperature wear wear mechanism
下载PDF
Corrosion and wear resistance of AZ31 Mg alloy treated by duplex process of magnetron sputtering and plasma electrolytic oxidation 被引量:12
18
作者 Bing-jian WEI Yu-lin CHENG +2 位作者 Yuan-yuan LIU Zhun-da ZHU Ying-liang CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2287-2306,共20页
In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation... In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation(PEO)in an aluminate and silicate electrolytes,respectively.The performance of PEO coatings was investigated by dry sliding wear and electrochemical corrosion tests.The aluminate coating exhibits excellent wear resistance under both 10 and 20 N loads.The silicate coating only shows low wear rate under 10 N,but it was destroyed under 20 N.Corrosion tests show that the Al layer after magnetron sputtering treatment alone cannot afford good protection to the Mg substrate.However,the duplex layer of PEO/Al can significantly improve the corrosion resistance of AZ31 alloy.Electrochemical tests show that the aluminate and silicate coatings have corrosion current densities of-1.6×10^(-6) and-1.1×10^(-6) A/cm^(2),respectively,which are two orders lower than that of the un-coated AZ31 alloy.However,immersion tests and electrochemical impedance spectroscopy(EIS)show that the aluminate coating exhibits better long-term corrosion protection than silicate coating. 展开更多
关键词 AZ31 magnesium alloy magnetron sputtering plasma electrolytic oxidation dry sliding wear CORROSION
下载PDF
Microstructure,mechanical and wear properties of aluminum borate whisker reinforced aluminum matrix composites 被引量:5
19
作者 Neeraj PANDEY ICHAKRABARTY +2 位作者 Kalpana BARKANE NSMEHTA MRMAJHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1731-1742,共12页
The microstructural features and the consequent mechanical properties were characterized in aluminium borate whisker(ABOw)(5, 10 and 15 wt.%) reinforced commercially-pure aluminium composites fabricated by conventiona... The microstructural features and the consequent mechanical properties were characterized in aluminium borate whisker(ABOw)(5, 10 and 15 wt.%) reinforced commercially-pure aluminium composites fabricated by conventional powder metallurgy technique. The aluminium powder and the whisker were effectively blended by a semi-powder metallurgy method. The blended powder mixtures were cold compacted and sintered at 600 ℃. The sintered composites were characterized for microstructural features by optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and X-ray diffraction(XRD) analysis. Porosity in the composites with variation in ABOw contents was determined. The effect of variation in content of ABOw on mechanical properties, viz. hardness, bending strength and compressive strength of the composites was evaluated. The dry sliding wear behaviour was evaluated at varying sliding distance at constant loads. Maximum flexural strength of 172 MPa and compressive strength of 324 MPa with improved hardness around HV 40.2 are obtained in composite with 10 wt.% ABOw. Further increase in ABOw content deteriorates the properties. A substantial increase in wear resistance is also observed with 10 wt.% ABOw. The excellent combination of mechanical properties of Al-10 wt.%ABOw composites is attributed to good interfacial bonds, less porosity and uniformity in the microstructure. 展开更多
关键词 aluminum matrix composite powder metallurgy aluminum borate whisker(ABOw)reinforcement flexural strength compression test dry sliding wear
下载PDF
Analysis of the high-temperature dry sliding behavior of CoCrFeNiTi0.5Alx high-entropy alloys 被引量:5
20
作者 Azmi ERDOGAN Mustafa Sabri GOK Sakin ZEYTIN 《Friction》 SCIE CSCD 2020年第1期198-207,共10页
In this study,CoCrFeNiTi0.5Alx high‐entropy alloys were produced by induction melting and their dry sliding wear behavior was examined at different temperatures.In addition to face‐centered cubic(FCC)phases,low amou... In this study,CoCrFeNiTi0.5Alx high‐entropy alloys were produced by induction melting and their dry sliding wear behavior was examined at different temperatures.In addition to face‐centered cubic(FCC)phases,low amounts of a tetragonal phase were detected in the microstructures of alloys without Al and microscratches were formed by wear particles on the worn surfaces of the alloy specimens.Two body‐centered cubic(BCC)phases were detected in the alloy with 0.5Al and a fatigue‐related extrusion wear mechanism was detected on the worn surface.The alloy specimen with a high Al content exhibited the best wear characteristics.No wear tracks were formed in single‐phase BCC intermetallic alloys at room temperature and they exhibited a higher wear strength at high temperatures when compared to other samples. 展开更多
关键词 high‐entropy alloy dry sliding wear FRICTION INTERMETALLIC
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部