Automotive dry clutches have been found to produce a low frequency sliding noise in many applications,which challenges the ride comfort of vehicles.In order to study this clutch sliding noise,a detailed finite element...Automotive dry clutches have been found to produce a low frequency sliding noise in many applications,which challenges the ride comfort of vehicles.In order to study this clutch sliding noise,a detailed finite element model including both a pressure plate assembly and a driven plate assembly was developed.Based on this model,a complex eigenvalue analysis is performed in this research.The effect of several major factors on the clutch sliding noise,such as the coefficient of friction,the clamping force,the geometric imperfection of the friction plate,and the thermal deformation of the pressure plate,were investigated numerically.A vehicle road test with clutch sliding noise was conducted for several different conditions.The leading frequencies of the clutch sliding noise in the testing were obtained and compared with the frequencies predicted by the numerical model.The simulation results show the same tendency as the road test.It is found that the clutch sliding noise can be reduced by decreasing the coefficient of friction.With the presence of the surface bumping of the friction plate,the propensity of the clutch sliding noise greatly increases and the corresponding squeal frequencies fall into the range lower than 1 kHz.With the consideration of the thermally introduced deformation of the clutch pressure plate,the possibility of clutch sliding noise is significantly reduced.It is concluded that the model with the incorporation of the thermal deformation of the pressure plate is more effective for the frequency prediction of clutch sliding noise.展开更多
A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphr...A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphragm spring introduces unstable dynamics which becomes more intensive due to the preload spring. In order to explore the intensified unstability, this paper builds dynamic models for the rotating lever coupling a negative stiffness diaphragm spring and a preload spring. The stability analysis using the Routh-Huiwitz criterion shows that the open-loop system can never be stable due to the negative stiffness. Even if the diaphragm spring stiffness is positive, the system is still unstable when the preload of the spring exceeds an upper limit. A proportionalintegral-derivative(PID) closed-loop scheme addressing this problem is designed to stabilize the system. The stability analysis for the closed-loop system shows that stable region emerges in spite of the negative stiffness; the more the negative stiffness is, the less the allowed preload is. Further, the influences of the dimensions and PID parameters on the stability condition are investigated. Finally, the transient dynamic responses of the system subjected to disturbance are compared between the unstable open-loop and stabilized closed-loop systems.展开更多
基金support for this work from the National Natural Science Foundation of China(NSFC)(No.51965012)the Key Research and Development Plan of Guangxi Province of China(No.AB18126002).
文摘Automotive dry clutches have been found to produce a low frequency sliding noise in many applications,which challenges the ride comfort of vehicles.In order to study this clutch sliding noise,a detailed finite element model including both a pressure plate assembly and a driven plate assembly was developed.Based on this model,a complex eigenvalue analysis is performed in this research.The effect of several major factors on the clutch sliding noise,such as the coefficient of friction,the clamping force,the geometric imperfection of the friction plate,and the thermal deformation of the pressure plate,were investigated numerically.A vehicle road test with clutch sliding noise was conducted for several different conditions.The leading frequencies of the clutch sliding noise in the testing were obtained and compared with the frequencies predicted by the numerical model.The simulation results show the same tendency as the road test.It is found that the clutch sliding noise can be reduced by decreasing the coefficient of friction.With the presence of the surface bumping of the friction plate,the propensity of the clutch sliding noise greatly increases and the corresponding squeal frequencies fall into the range lower than 1 kHz.With the consideration of the thermally introduced deformation of the clutch pressure plate,the possibility of clutch sliding noise is significantly reduced.It is concluded that the model with the incorporation of the thermal deformation of the pressure plate is more effective for the frequency prediction of clutch sliding noise.
基金the National Natural Science Foundation of China(No.51475284)
文摘A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphragm spring introduces unstable dynamics which becomes more intensive due to the preload spring. In order to explore the intensified unstability, this paper builds dynamic models for the rotating lever coupling a negative stiffness diaphragm spring and a preload spring. The stability analysis using the Routh-Huiwitz criterion shows that the open-loop system can never be stable due to the negative stiffness. Even if the diaphragm spring stiffness is positive, the system is still unstable when the preload of the spring exceeds an upper limit. A proportionalintegral-derivative(PID) closed-loop scheme addressing this problem is designed to stabilize the system. The stability analysis for the closed-loop system shows that stable region emerges in spite of the negative stiffness; the more the negative stiffness is, the less the allowed preload is. Further, the influences of the dimensions and PID parameters on the stability condition are investigated. Finally, the transient dynamic responses of the system subjected to disturbance are compared between the unstable open-loop and stabilized closed-loop systems.