Different sets of dry spell length such as complete series, monthlymaximum, seasonal maximum, and annual maximum are applied andmodeled with different probability distribution functions (such as GumbelMax, generalized...Different sets of dry spell length such as complete series, monthlymaximum, seasonal maximum, and annual maximum are applied andmodeled with different probability distribution functions (such as GumbelMax, generalized extreme value, Log-Logistic, generalized logistic, inverseGaussian, Log-Pearson 3, generalized Pareto) to recognize in whichduration, dry spells cause drought. The drought situation and temporalanalysis in the North of Iraq region were done using the SPI index andby software of DrinC at a time scale of 3.6 and 12 months. Because ofapplicability, availability of data and the aim of the study, SPI is selectedto analyze the dry spells in this study. Based on the maximum length ofthe available statistical period, the statistics for the years 1980 to 2019were used from nine meteorological stations for analysis. The results of thestudy showed the severity of drought during the study period which relatedto dry spells. The results of this research confirm the variation of droughtoccurrence with varying degrees in different time and different dry spellscondition in Iraq.展开更多
Identification and extraction length of dry spells in arid and semi-arid regions is very important. Thus, the use of climate change prediction models for study the behavior of the climatic parameters in the future tim...Identification and extraction length of dry spells in arid and semi-arid regions is very important. Thus, the use of climate change prediction models for study the behavior of the climatic parameters in the future time is inevitable. With recognition of the spatial and temporal behavior variables such as precipitation, we can prevent from destructive effects. In this research, the performance of Atmosphere-Ocean General Circulation Models (AOGCMs) was evaluated for simulation length of dry spells in the south-western area of Iran. The results show that the length of dry spell is relatively decreased in cold seasons (autumn and winter) and increased in the warm season (spring and summer) in both A2 and B2 Scenarios. The length of the dry spell on monthly scale for scenario A2 is 6% (equivalent to 2 days) and for scenario B2 is 9 percent (approximately 2.4 day) increased compared to the baseline period. For assess the uncertainty, AOGCMs were weighting. The results show that the best model for simulation of dry spells is HADCM3 and GFCM2.1, because the results have a less error. On the other hand, NCCCSM have the lowest weight for simulation dry spells in both scenarios.展开更多
Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainf...Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainfall is important for effective planning among the different stakeholders in the weather and climate sectors. This study aimed at understanding how intra seasonal rainfall characteristics, especially Consecutive Dry Days (CDD) and Consecutive Wet Days (CWD), in the two major rainfall seasons will change under two future climate scenarios of RCP4.5 and RCP8.5 in Uganda, covering two future periods of 2021-2050 and 2051-2080. The results indicate a high likelihood of reduced consecutive rainfall days, especially over the Northeastern regions of the country, for both 2021-2050 and 2051-2080. However, the trends in the entire country for the two major rainfall seasons, March to May and September to November, are not significant. Nonetheless, the distribution of these days is important for most agricultural activities during different stages of crop growth. The consecutive dry days show a fairly increasing trend in the eastern part of the country, particularly in the second season of September to November. An increase in consecutive dry days implies more frequent dry spells in the midst of the growing season, potentially affecting some crops during critical growth stages.展开更多
Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improv...Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not well understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spells in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic film mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfall analysis showed that dry spells of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9-69.2% of the maize growing periods. The 〉15-d dry spells during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not significantly different among the three treatments, but the mulched treatments significantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield significantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It's concluded that both GM and FM are effective strategies for mitigating the impacts of water deficit and improving maize production in semiarid areas. However. FM is more effective than GM.展开更多
为了按不同的应用需求生成可信的任意长序列逐日天气数据,为作物天气系统研究提供数据支持,该文描述了一个以干湿期随机模型为基础,组合了日降水量、温度和辐射变量随机模型的逐日天气发生器WGDWS(Weather Generator based on Dry and W...为了按不同的应用需求生成可信的任意长序列逐日天气数据,为作物天气系统研究提供数据支持,该文描述了一个以干湿期随机模型为基础,组合了日降水量、温度和辐射变量随机模型的逐日天气发生器WGDWS(Weather Generator based on Dry and Wet Spells)。它分为两部分:以干湿期为独立随机变量的干湿期模型部分,和依赖第一种模型生成其余天气变量的模型部分;其天气要素的生成主要分2个步骤,即首先根据月经验分布值产生一个干期或湿期长度,然后生成干期或湿期的逐日值。利用代表中国不同地理区域的9个站点1973-2003年的逐日气象资料对天气发生器WGDWS进行了检验,并与基于干湿日开发的DWSS天气发生器进行了比较。结果表明两者性能基本相近,并且WGDWS模拟干湿期的效果更好。因此,WGDWS天气发生器用于生成逐日天气序列是可靠的,同时作为一个JAVA组件,还可以方便地嵌入作物模型系统。展开更多
Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test ...Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.展开更多
The climate crises in East Africa (EA), particularly in Burundi, have affected vegetation which, in turn, plays a key role in the climate system by modifying the terrestrial water and energy balance. Consequently, it ...The climate crises in East Africa (EA), particularly in Burundi, have affected vegetation which, in turn, plays a key role in the climate system by modifying the terrestrial water and energy balance. Consequently, it is vital to understand vegetation dynamics and its response to current and projected climate conditions to support the design of climate resilient land management strategies. The objective of this study was to study the dynamics of vegetation cover over the Northeastern Burundi (NEB) in response to climatic constraints. The methodology used consisted of the interpretation of satellite images along with the analysis of data collected through rain-gauge stations. The data sets used include time series composite moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data collected between February 2000 and December 2017;long term (1986-2017) rainfall data acquired from two meteorological stations throughout the Northeastern provinces in Burundi and precipitation and mean temperature data (1986-2017) from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) and ERA5 Daily aggregates for the study area. The study provides an assessment of the vegetation trends in NEB using the NDVI time series. In addition, regression analysis is applied to assess the relations between NDVI and precipitation, air temperature, potential evapotranspiration, as well as with growing season characteristics (onset, cessation, and length). Results show that the rate in vegetation productivity is persistently gradual between 2000 and 2011 despite fluctuations from the mean position, followed by a lower growth rate over the period 2011-2017. There has been trend variation in precipitation, neither the temperature was constant. The temperature over the region has increased while the precipitation has decreased. The onset of the growing season and air temperature also show a significant influence on seasonal vegetation dynamics in the region. Drought-induced plant stress observed at the onset of the rainy season was the most important contributor to the subsequent less greening of vegetation especially over the area near the northern lakes.展开更多
The different drought phases observed during the 1970-2010 period have underlined important weaknesses of West African agricultural systems. The droughts resulted in important decreases in crop production, triggering ...The different drought phases observed during the 1970-2010 period have underlined important weaknesses of West African agricultural systems. The droughts resulted in important decreases in crop production, triggering a significant deficit in food availability. Many studies have identified changes in rain events seasonal patterns as the key drivers of agricultural production failure during these drought phases. In this study, seven agriculturally-relevant intra-seasonal rainfall characteristics (i.e., annual rainfall amount, onset and cessation of the rainy season, dry spells, extreme rain events, hot spells, and strong winds) and associated constraints to crop growth are described for the main cereals (maize, millet, and sorghum) in southwestern Burkina Faso. These characteristics are calculated or determined using daily climate data from a local network of 16 weather stations spanning the 1970-2013 period. A computation of the intensity and the occurrence of these phenomena during the rainy seasons helped to draw the rainy seasons’ nomenclature. Findings suggest that the rainy seasons during the drought phases are characterized by low annual rainfall amount, late onset, early cessation and more frequent long dry spells (>7 days). Furthermore, the long dry spells mostly occurred during the most sensitive phases of crop development: germination at the beginning of the rainy season and flowering at the end of the rainy season. Also, the intensity and the probability of occurrence of the other extreme events (hot spells and strong winds) during rainy seasons are very high in the establishment phase. Thus, adaptation strategies to mitigate these unfavorable climate conditions include a selection of short-cycle crop varieties combined with supplementary irrigation systems during long dry spells.展开更多
文摘Different sets of dry spell length such as complete series, monthlymaximum, seasonal maximum, and annual maximum are applied andmodeled with different probability distribution functions (such as GumbelMax, generalized extreme value, Log-Logistic, generalized logistic, inverseGaussian, Log-Pearson 3, generalized Pareto) to recognize in whichduration, dry spells cause drought. The drought situation and temporalanalysis in the North of Iraq region were done using the SPI index andby software of DrinC at a time scale of 3.6 and 12 months. Because ofapplicability, availability of data and the aim of the study, SPI is selectedto analyze the dry spells in this study. Based on the maximum length ofthe available statistical period, the statistics for the years 1980 to 2019were used from nine meteorological stations for analysis. The results of thestudy showed the severity of drought during the study period which relatedto dry spells. The results of this research confirm the variation of droughtoccurrence with varying degrees in different time and different dry spellscondition in Iraq.
文摘Identification and extraction length of dry spells in arid and semi-arid regions is very important. Thus, the use of climate change prediction models for study the behavior of the climatic parameters in the future time is inevitable. With recognition of the spatial and temporal behavior variables such as precipitation, we can prevent from destructive effects. In this research, the performance of Atmosphere-Ocean General Circulation Models (AOGCMs) was evaluated for simulation length of dry spells in the south-western area of Iran. The results show that the length of dry spell is relatively decreased in cold seasons (autumn and winter) and increased in the warm season (spring and summer) in both A2 and B2 Scenarios. The length of the dry spell on monthly scale for scenario A2 is 6% (equivalent to 2 days) and for scenario B2 is 9 percent (approximately 2.4 day) increased compared to the baseline period. For assess the uncertainty, AOGCMs were weighting. The results show that the best model for simulation of dry spells is HADCM3 and GFCM2.1, because the results have a less error. On the other hand, NCCCSM have the lowest weight for simulation dry spells in both scenarios.
文摘Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainfall is important for effective planning among the different stakeholders in the weather and climate sectors. This study aimed at understanding how intra seasonal rainfall characteristics, especially Consecutive Dry Days (CDD) and Consecutive Wet Days (CWD), in the two major rainfall seasons will change under two future climate scenarios of RCP4.5 and RCP8.5 in Uganda, covering two future periods of 2021-2050 and 2051-2080. The results indicate a high likelihood of reduced consecutive rainfall days, especially over the Northeastern regions of the country, for both 2021-2050 and 2051-2080. However, the trends in the entire country for the two major rainfall seasons, March to May and September to November, are not significant. Nonetheless, the distribution of these days is important for most agricultural activities during different stages of crop growth. The consecutive dry days show a fairly increasing trend in the eastern part of the country, particularly in the second season of September to November. An increase in consecutive dry days implies more frequent dry spells in the midst of the growing season, potentially affecting some crops during critical growth stages.
基金financially supported by the National Natural Science Foundation of China (31270553)the National Basic Research Program of China (2009CB118604)the Special Fund for Agro-Scientific Research in the Public Interest of China (201103003)
文摘Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not well understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spells in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic film mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfall analysis showed that dry spells of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9-69.2% of the maize growing periods. The 〉15-d dry spells during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not significantly different among the three treatments, but the mulched treatments significantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield significantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It's concluded that both GM and FM are effective strategies for mitigating the impacts of water deficit and improving maize production in semiarid areas. However. FM is more effective than GM.
文摘为了按不同的应用需求生成可信的任意长序列逐日天气数据,为作物天气系统研究提供数据支持,该文描述了一个以干湿期随机模型为基础,组合了日降水量、温度和辐射变量随机模型的逐日天气发生器WGDWS(Weather Generator based on Dry and Wet Spells)。它分为两部分:以干湿期为独立随机变量的干湿期模型部分,和依赖第一种模型生成其余天气变量的模型部分;其天气要素的生成主要分2个步骤,即首先根据月经验分布值产生一个干期或湿期长度,然后生成干期或湿期的逐日值。利用代表中国不同地理区域的9个站点1973-2003年的逐日气象资料对天气发生器WGDWS进行了检验,并与基于干湿日开发的DWSS天气发生器进行了比较。结果表明两者性能基本相近,并且WGDWS模拟干湿期的效果更好。因此,WGDWS天气发生器用于生成逐日天气序列是可靠的,同时作为一个JAVA组件,还可以方便地嵌入作物模型系统。
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB421401 and 2006CB400503)
文摘Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.
文摘The climate crises in East Africa (EA), particularly in Burundi, have affected vegetation which, in turn, plays a key role in the climate system by modifying the terrestrial water and energy balance. Consequently, it is vital to understand vegetation dynamics and its response to current and projected climate conditions to support the design of climate resilient land management strategies. The objective of this study was to study the dynamics of vegetation cover over the Northeastern Burundi (NEB) in response to climatic constraints. The methodology used consisted of the interpretation of satellite images along with the analysis of data collected through rain-gauge stations. The data sets used include time series composite moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data collected between February 2000 and December 2017;long term (1986-2017) rainfall data acquired from two meteorological stations throughout the Northeastern provinces in Burundi and precipitation and mean temperature data (1986-2017) from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) and ERA5 Daily aggregates for the study area. The study provides an assessment of the vegetation trends in NEB using the NDVI time series. In addition, regression analysis is applied to assess the relations between NDVI and precipitation, air temperature, potential evapotranspiration, as well as with growing season characteristics (onset, cessation, and length). Results show that the rate in vegetation productivity is persistently gradual between 2000 and 2011 despite fluctuations from the mean position, followed by a lower growth rate over the period 2011-2017. There has been trend variation in precipitation, neither the temperature was constant. The temperature over the region has increased while the precipitation has decreased. The onset of the growing season and air temperature also show a significant influence on seasonal vegetation dynamics in the region. Drought-induced plant stress observed at the onset of the rainy season was the most important contributor to the subsequent less greening of vegetation especially over the area near the northern lakes.
文摘The different drought phases observed during the 1970-2010 period have underlined important weaknesses of West African agricultural systems. The droughts resulted in important decreases in crop production, triggering a significant deficit in food availability. Many studies have identified changes in rain events seasonal patterns as the key drivers of agricultural production failure during these drought phases. In this study, seven agriculturally-relevant intra-seasonal rainfall characteristics (i.e., annual rainfall amount, onset and cessation of the rainy season, dry spells, extreme rain events, hot spells, and strong winds) and associated constraints to crop growth are described for the main cereals (maize, millet, and sorghum) in southwestern Burkina Faso. These characteristics are calculated or determined using daily climate data from a local network of 16 weather stations spanning the 1970-2013 period. A computation of the intensity and the occurrence of these phenomena during the rainy seasons helped to draw the rainy seasons’ nomenclature. Findings suggest that the rainy seasons during the drought phases are characterized by low annual rainfall amount, late onset, early cessation and more frequent long dry spells (>7 days). Furthermore, the long dry spells mostly occurred during the most sensitive phases of crop development: germination at the beginning of the rainy season and flowering at the end of the rainy season. Also, the intensity and the probability of occurrence of the other extreme events (hot spells and strong winds) during rainy seasons are very high in the establishment phase. Thus, adaptation strategies to mitigate these unfavorable climate conditions include a selection of short-cycle crop varieties combined with supplementary irrigation systems during long dry spells.