The Saharian ecosystems present an important intensity of rising sensitization to: Erosion, and desertification whose impacts are irreversible. On the one hand, the weakness of the yield and the poverty of soil lead t...The Saharian ecosystems present an important intensity of rising sensitization to: Erosion, and desertification whose impacts are irreversible. On the one hand, the weakness of the yield and the poverty of soil lead to a limited biodiversity. In addition to these difficulties, hydra is the main cause of the rarification of certain pastoral species such as Cenchrus ciliaris and Digitaria commutata. The ecological study underlines a distribution of these species which are very dependent on water resources in the dry regions of Tunisia. The bioclimatic (temperature, pluviometry) variations lead to modifications to these species from one area to another which are translated through several parameters. Concerning the number of bundles, the difference is important. The national park of Bouhedma records the highest number, compared with Bni khdach, Jerba, Khanguit aicha and Matmata respectively. The variation inter-site of study also is considerable by the study of the morphological parameters (height, number and length of leaves by bundle, number of ear) whose bundles of the national park Bouhedma occupy the first class.展开更多
In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two t...In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.展开更多
In order to prolong the service life of the cooling zone of large scale coke dry quenching ovens,six kinds possible refractories for the cooling zone of large scale coke dry quenching ovens: SiC containing brick A,Si...In order to prolong the service life of the cooling zone of large scale coke dry quenching ovens,six kinds possible refractories for the cooling zone of large scale coke dry quenching ovens: SiC containing brick A,SiC containing brick B,mullite-andalusite brick,spinel containing brick,zirconia containing brick,corundum-mullite brick and grade B mullite brick,were analyzed in properties. It is found that the cooling zone lining adopting SiC containing bricks or mullite-andalusite bricks has much longer service life. Based on this,a new type of wear resistant brick was developed. The brick has a compressive strength of 135 MPa,a wear loss of 2. 10cm^3(only a quarter of that of the grade B mullite brick),and a higher bulk density than the grade B mullite brick. The application of the brick in a 140t·h^(-1)coke dry quenching oven showed that it performed better than the grade B mullite brick. The cooling zone adopting the new bricks has a lower coke discharging temperature,which is beneficial to the enhancement of heat recovery efficiency and steam power generation.展开更多
Climate in China's Mainland can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that...Climate in China's Mainland can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that is oriented from Southwest China to the upper Yellow River, North China, and Northeast China. In the three regions, dry-wet climate changes are directly linked to the interaction of the southerly monsoon flow on the east side of the Tibetan Plateau and the westerly flow on the north side of the Plateau from the inter-annual to inter-decadal timescales. Some basic features of climate variability in the three regions for the last half century and the historical hundreds of years are reviewed in this paper. In the last half century, an increasing trend of summer precipitation associated with the enhancing westerly flow is found in the westerly region from Xinjiang to northern parts of North China and Northeast China. On the other hand, an increasing trend of summer precipitation along the Yangtze River and a decreasing trend of summer precipitation along the monsoon northernmost marginal active zone are associated with the weakening monsoon flow in East Asia. Historical documents are widely distributed in the monsoon region for hundreds of years and natural climate proxies are constructed in the non-monsoon region, while two types of climate proxies can be commonly found over the monsoon northernmost marginal active zone. In the monsoon region, dry-wet variation centers are altered among North China, the lower Yangtze River, and South China from one century to another. Dry or wet anomalies are firstly observed along the monsoon northernmost marginal active zone and shifted southward or southeastward to the Yangtze River valley and South China in about a 70-year timescale. Severe drought events are experienced along the monsoon northernmost marginal active zone during the last 5 centuries. Inter-decadal dry-wet variations are depicted by natural proxies for the last 4-5 centuries in several areas over the non-monsoon region. Some questions, such as the impact of global warming on dry-wet regime changes in China, complex interactions between the monsoon and westerly flows in Northeast China, and the integrated multi-proxy analysis throughout all of China, are proposed.展开更多
The desertification process is rapidly developing at present and 61.5% of the land area in the zone are already desertified.Among the desertified lands, 26.9% are seriously desertified, 25% most seriously desertified ...The desertification process is rapidly developing at present and 61.5% of the land area in the zone are already desertified.Among the desertified lands, 26.9% are seriously desertified, 25% most seriously desertified and 47.4% are the lands where desertification is under way. They are caused by over-reclamation for farming, over-grazing, unreasonable collection of firewood,the destruction of vegetation and the misuse of water resources. Under the ecological environment in semi-arid zone,the degraded environment process possesses the ability of restoring to its original status as soon as the interruption of excessive human activities are eliminated. The fencing- and-self-cultivating method is an effective measure adopted universally in semi-arid zone to cure the desertified lands.The desertified lands can be readjusted and controlled easily if other controlling measures are supplemented. The fundamental ways to control desertification are to utilize rationally the resources, to readjust the existing展开更多
水力压裂技术是实现低渗油气及地热储层的高效开发利用的关键技术手段,为了研究干热岩型地热储层水力压裂过程中水力裂缝的扩展规律,本文使用粘结单元法(Cohesive Zone Method,CZM)研究了压裂液排量、压裂液粘度以及水平地应力差对水力...水力压裂技术是实现低渗油气及地热储层的高效开发利用的关键技术手段,为了研究干热岩型地热储层水力压裂过程中水力裂缝的扩展规律,本文使用粘结单元法(Cohesive Zone Method,CZM)研究了压裂液排量、压裂液粘度以及水平地应力差对水力裂缝形态的影响,并利用正交试验对上述压裂工艺参数的组合进行优化。结果表明:压裂液排量对水力裂缝的长度具有重要影响,而压裂液的粘度对水力裂缝的宽度具有显著影响;压裂液的排量和粘度的增加,促进了分支裂缝的萌生和扩展;水平地应力差为1 MPa时,本文所建立的模型在压裂液排量和粘度分别取0.004 m3/s和0.07 Pa·s条件下,可获得最佳的压裂改造效果;随着压裂液的排量和粘度的持续增加,当压裂液的排量和粘度分别超过0.004 m3/s和0.07 Pa·s后,继续增加压裂液的排量和粘度将导致水力裂缝的长度和宽度的减小,可见在实际压裂过程中不能盲目通过提高压裂液的排量和粘度的方式实现对压裂效果的持续改进。本文丰富了干热岩储层改造的数值模拟手段,相关研究成果有望为干热岩型地热资源开采过程中裂缝扩展行为预测和压裂工艺参数的优化提供技术支撑。展开更多
Partial root-zone irrigation (PRI) has been proved to be an optimal water-saving irrigation technology, however, few studies were done on water transportation and distribution under PRI. The present study was perfor...Partial root-zone irrigation (PRI) has been proved to be an optimal water-saving irrigation technology, however, few studies were done on water transportation and distribution under PRI. The present study was performed to investigate the water transportation and distribution among the wet and dry root-zones and the shoot using deuterium water (D2O) in 1/4 root-zone PRI experiment. It also aimed to determine and analyze the D2O relative abundance within different types of roots and shoots. The results indicated that water could be transported from roots in wet root-zone to roots in dry root-zone and shoots within 2 h after irrigation. Water transportation in roots of wet-zone was carried out by absorbing root, 1-2 mm root, 2-5 mm root, and〉5 mm root progressively, while through a reverse process in three dry root-zones. In shoots, water was transported to trunk, central trunk, annual branches, shoot and leaf progressively. Thus in the young apple trees subjected to PRI, water was distributed ifrst in the roots, including the roots in the wet and dry root-zones, to satisfy the water need of roots itself, and then transported to the shoot within hours of irrigation.展开更多
Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformati...Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformation, loads and restraints around dam. With time going by, damage to darn concrete happens. As a result, the strength, stiffness and resistance of concrete will decrease accompanying with damage accumulation and dam structure performance behavior and lifetime will be shorten or even destructed. At present, most of researches focus on concrete material itself and seldom consider effects of water content for concrete structures. That is apparently inconsistent with the actual situation. In engineering practice, it is urgently needed to assess existing dam structure damage state considering dry zoning in concrete. Through taking C30 dam concrete as standard specimen, alternate freezing and thawing tests are undertaken and changing law of time-dependent concrete damage state resulting in alternate wetting and drying has been studied in this paper. And then calculation formulas of time-dependent concrete damage evolution process considering alternate wetting and drying under condition of freeze-thaw cycle tests are established. Combining with four parameters Hsieh-Ting-Chen ( H -T-C ) model, some relevant factors or parameters are obtained through indoor testing and life prediction model of concrete dam based on dry zoning and damage theory is put forward which provides technical supports for dam safety evaluation and management of sustainable development.展开更多
文摘The Saharian ecosystems present an important intensity of rising sensitization to: Erosion, and desertification whose impacts are irreversible. On the one hand, the weakness of the yield and the poverty of soil lead to a limited biodiversity. In addition to these difficulties, hydra is the main cause of the rarification of certain pastoral species such as Cenchrus ciliaris and Digitaria commutata. The ecological study underlines a distribution of these species which are very dependent on water resources in the dry regions of Tunisia. The bioclimatic (temperature, pluviometry) variations lead to modifications to these species from one area to another which are translated through several parameters. Concerning the number of bundles, the difference is important. The national park of Bouhedma records the highest number, compared with Bni khdach, Jerba, Khanguit aicha and Matmata respectively. The variation inter-site of study also is considerable by the study of the morphological parameters (height, number and length of leaves by bundle, number of ear) whose bundles of the national park Bouhedma occupy the first class.
文摘In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.
文摘In order to prolong the service life of the cooling zone of large scale coke dry quenching ovens,six kinds possible refractories for the cooling zone of large scale coke dry quenching ovens: SiC containing brick A,SiC containing brick B,mullite-andalusite brick,spinel containing brick,zirconia containing brick,corundum-mullite brick and grade B mullite brick,were analyzed in properties. It is found that the cooling zone lining adopting SiC containing bricks or mullite-andalusite bricks has much longer service life. Based on this,a new type of wear resistant brick was developed. The brick has a compressive strength of 135 MPa,a wear loss of 2. 10cm^3(only a quarter of that of the grade B mullite brick),and a higher bulk density than the grade B mullite brick. The application of the brick in a 140t·h^(-1)coke dry quenching oven showed that it performed better than the grade B mullite brick. The cooling zone adopting the new bricks has a lower coke discharging temperature,which is beneficial to the enhancement of heat recovery efficiency and steam power generation.
基金supported by the National Natural Science Foundation of China(Nos40890053,90502001,and 90711003)
文摘Climate in China's Mainland can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that is oriented from Southwest China to the upper Yellow River, North China, and Northeast China. In the three regions, dry-wet climate changes are directly linked to the interaction of the southerly monsoon flow on the east side of the Tibetan Plateau and the westerly flow on the north side of the Plateau from the inter-annual to inter-decadal timescales. Some basic features of climate variability in the three regions for the last half century and the historical hundreds of years are reviewed in this paper. In the last half century, an increasing trend of summer precipitation associated with the enhancing westerly flow is found in the westerly region from Xinjiang to northern parts of North China and Northeast China. On the other hand, an increasing trend of summer precipitation along the Yangtze River and a decreasing trend of summer precipitation along the monsoon northernmost marginal active zone are associated with the weakening monsoon flow in East Asia. Historical documents are widely distributed in the monsoon region for hundreds of years and natural climate proxies are constructed in the non-monsoon region, while two types of climate proxies can be commonly found over the monsoon northernmost marginal active zone. In the monsoon region, dry-wet variation centers are altered among North China, the lower Yangtze River, and South China from one century to another. Dry or wet anomalies are firstly observed along the monsoon northernmost marginal active zone and shifted southward or southeastward to the Yangtze River valley and South China in about a 70-year timescale. Severe drought events are experienced along the monsoon northernmost marginal active zone during the last 5 centuries. Inter-decadal dry-wet variations are depicted by natural proxies for the last 4-5 centuries in several areas over the non-monsoon region. Some questions, such as the impact of global warming on dry-wet regime changes in China, complex interactions between the monsoon and westerly flows in Northeast China, and the integrated multi-proxy analysis throughout all of China, are proposed.
文摘The desertification process is rapidly developing at present and 61.5% of the land area in the zone are already desertified.Among the desertified lands, 26.9% are seriously desertified, 25% most seriously desertified and 47.4% are the lands where desertification is under way. They are caused by over-reclamation for farming, over-grazing, unreasonable collection of firewood,the destruction of vegetation and the misuse of water resources. Under the ecological environment in semi-arid zone,the degraded environment process possesses the ability of restoring to its original status as soon as the interruption of excessive human activities are eliminated. The fencing- and-self-cultivating method is an effective measure adopted universally in semi-arid zone to cure the desertified lands.The desertified lands can be readjusted and controlled easily if other controlling measures are supplemented. The fundamental ways to control desertification are to utilize rationally the resources, to readjust the existing
基金supported by the Beijing Natural Science Foundation,China (6102006)the New-Star of Science and Technology of Beijing Metropolis,China (2011051)
文摘Partial root-zone irrigation (PRI) has been proved to be an optimal water-saving irrigation technology, however, few studies were done on water transportation and distribution under PRI. The present study was performed to investigate the water transportation and distribution among the wet and dry root-zones and the shoot using deuterium water (D2O) in 1/4 root-zone PRI experiment. It also aimed to determine and analyze the D2O relative abundance within different types of roots and shoots. The results indicated that water could be transported from roots in wet root-zone to roots in dry root-zone and shoots within 2 h after irrigation. Water transportation in roots of wet-zone was carried out by absorbing root, 1-2 mm root, 2-5 mm root, and〉5 mm root progressively, while through a reverse process in three dry root-zones. In shoots, water was transported to trunk, central trunk, annual branches, shoot and leaf progressively. Thus in the young apple trees subjected to PRI, water was distributed ifrst in the roots, including the roots in the wet and dry root-zones, to satisfy the water need of roots itself, and then transported to the shoot within hours of irrigation.
基金This research was supported by NSFC (National Natural Science Foundation of China) (Granted No.: 50909054, 50925933).
文摘Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformation, loads and restraints around dam. With time going by, damage to darn concrete happens. As a result, the strength, stiffness and resistance of concrete will decrease accompanying with damage accumulation and dam structure performance behavior and lifetime will be shorten or even destructed. At present, most of researches focus on concrete material itself and seldom consider effects of water content for concrete structures. That is apparently inconsistent with the actual situation. In engineering practice, it is urgently needed to assess existing dam structure damage state considering dry zoning in concrete. Through taking C30 dam concrete as standard specimen, alternate freezing and thawing tests are undertaken and changing law of time-dependent concrete damage state resulting in alternate wetting and drying has been studied in this paper. And then calculation formulas of time-dependent concrete damage evolution process considering alternate wetting and drying under condition of freeze-thaw cycle tests are established. Combining with four parameters Hsieh-Ting-Chen ( H -T-C ) model, some relevant factors or parameters are obtained through indoor testing and life prediction model of concrete dam based on dry zoning and damage theory is put forward which provides technical supports for dam safety evaluation and management of sustainable development.