期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of Partial Substitution of Ni by Cu in LaNiO_3 Perovskite Catalyst for Dry Methane Reforming 被引量:5
1
作者 G.R.MORADI F.KHOSRAVIAN M.RAHMANZADEH 《催化学报》 SCIE CAS CSCD 北大核心 2012年第5期797-801,共5页
A series of ternary perovskite type oxides LaNi1-xCuxO3(x = 0.2,0.4,0.6,0.8,and 1.0) were synthesized via the sol-gel method in propionic acid.Partial substitution of Ni by Cu showed higher activities and selectivitie... A series of ternary perovskite type oxides LaNi1-xCuxO3(x = 0.2,0.4,0.6,0.8,and 1.0) were synthesized via the sol-gel method in propionic acid.Partial substitution of Ni by Cu showed higher activities and selectivities towards syngas products.LaNi0.8Cu0.2O3 was the most active toward the CH4 and CO2 conversions,and was selective for syngas products.Temperature-programmed reduction results showed that the addition of Cu facilitates the reduction of Ni3+ to Ni0,which is the main reason for the higher performance of this catalyst. 展开更多
关键词 dry reforming of methane PEROVSKITE lanthanun NICKEL sol-gel method
下载PDF
BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)-impregnated Ni-GDC by phase-inversion as an anode of solid oxide fuel cells with on-cell dry methane reforming
2
作者 Yanya Liu Jun Luo +4 位作者 Cheng Li Bo Liu Dong Yan Jian Li Lichao Jia 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期834-841,共8页
BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)(BCFN)in a perovskite structure is impregnated consecutively by BCFN solution and BCFN suspension into a phase-inversion prepared NiO–Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)scaffold as an anod... BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)(BCFN)in a perovskite structure is impregnated consecutively by BCFN solution and BCFN suspension into a phase-inversion prepared NiO–Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)scaffold as an anode for solid oxide fuel cells(SOFCs)with on-cell dry reforming of methane(DRM).The whole pore surface of the scaffold is covered by small BCFN particles formed by BCFN solution impregnation;the large pores near the scaffold surface are filled by BCFN aerogels with a high specific surface area produced by BCFN suspension impregnation,which act as a catalytic layer for on-cell DRM.After reduction,the anode consists of a Ni–GDC scaffold and BCFN particles with exsolved FeNi3 nanoparticles.This BCFN-impregnated Ni–GDC anode has higher electrical conductivity,electrochemical activity,and resistance to carbon deposition,with which the cell shows maximum power densities between 1.44 and 0.92 W·cm^(−2) when using H_(2) and between 1.09 and 0.50 W·cm^(−2) when using CO_(2)–CH_(4) at temperatures ranging from 750 to 600℃.A stable performance at 400 mA·cm^(−2) and 700℃is achieved using 45%CO_(2)–45%CH_(4)–10%N_(2) for more than 400 h without carbon deposition,benefiting from the impregnated BCFN aerogel with a high specific surface area and water adsorbability. 展开更多
关键词 AEROGEL solid oxide fuel cells(SOFCs) phase-inversion dry reforming of methane(DRM) carbon resistance
原文传递
Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model 被引量:2
3
作者 Yu Wang Qunfeng Zhang +3 位作者 Xinlei Liu Junqi Weng Guanghua Ye Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期293-303,共11页
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w... Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking. 展开更多
关键词 Deactivation by coking dry reforming of methane Pore network model Diffusion limitation Catalyst pellet
下载PDF
The Nature of Active Sites for Plasmon-Mediated Photothermal Catalysis and Heat-Coupled Photocatalysis in Dry Reforming of Methane
4
作者 Jinqiang Zhang Liang Wang +15 位作者 Xiaoli Zhao Lei Shi Haijun Chen Shu Zhang Peng Zhang Shuaijun Wang Laichang Zhang Yinfeng Wang Xiaoyuan Wang Yuezhao Zhu Huayang Zhang Xiaoguang Duan Mingbo Wu Guosheng Shao Shaobin Wang Hongqi Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期381-388,共8页
Solar energy-induced catalysis has been attracting intensive interests and its quantum efficiencies in plasmon-mediated photothermal catalysis(P-photothermal catalysis)and external heat-coupled photocatalysis(E-photot... Solar energy-induced catalysis has been attracting intensive interests and its quantum efficiencies in plasmon-mediated photothermal catalysis(P-photothermal catalysis)and external heat-coupled photocatalysis(E-photothermal catalysis)are ultimately determined by the catalyst structure for photo-induced energetic hot carriers.Herein,different catalysts of supported(TiO_(2)-P25 and Al_(2)O_(3))platinum quantum dots are employed in photo,thermal,and photothermal catalytic dry reforming of methane.Integrated experimental and computational results unveil different active sites(hot zones)on the two catalysts for photo,thermal,and photothermal catalysis.The hot zones of P-photothermal catalysis are identified to be the metal-support interface on Pt/P25 and the Pt surface on Pt/Al_(2)O_(3),respectively.However,a change of the active site to the Pt surface on Pt/P25 is for the first time observed in E-photothermal catalysis(external heating temperature of 700℃).The hot zones contribute to the significant enhancements in photothermal catalytic reactivity against thermocatalysis.This study helps to understand the reaction mechanism of photothermal catalysis to exploit efficient catalysts for solar energy utilization and fossil fuels upgrading. 展开更多
关键词 dry reforming of methane hot zones photothermal catalysis platinum-based catalysts
下载PDF
An efficient technique for improving methanol yield using dual C02 feeds and dry methane reforming 被引量:1
5
作者 Yang Su Liping Lü +1 位作者 Weifeng Shen Shun'an Wei 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第4期614-628,共15页
Steam methane reforming(SMR)-based methanol synthesis plants utilizing a single CO2 feed represent one of the predominant technologies for improving methanol yield and CO2 utilization.However,SMR alone cannot achieve ... Steam methane reforming(SMR)-based methanol synthesis plants utilizing a single CO2 feed represent one of the predominant technologies for improving methanol yield and CO2 utilization.However,SMR alone cannot achieve full CO2 utilization,and a high water content accumulates if CO2 is only fed into the methanol reactor.In this study,a process integrating SMR with dry methane reforming to improve the conversion of both methane and CO2 is proposed.We also propose an innovative methanol production approach in which captured CO2 is introduced into both the SMR process and the recycle gas of the methanol synthesis loop.This dual CO2 feed approach aims to optimize the stoichio-metric ratio of the reactants.Comparative evaluations are carried out from a techno-economic point of view,and the proposed process is demonstrated to be more efficient in terms of both methanol productivity and CO2 utilization than the existing stand-alone natural gas-based methanol process. 展开更多
关键词 methanol synthesis CO2 utilization dry methane reforming steam methane reforming process design
原文传递
Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane 被引量:9
6
作者 Huali Long Yan Xu +4 位作者 Xiaoqing Zhang Shijing Hu Shuyong Shang Yongxiang Yin Xiaoyan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期733-739,共7页
Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was inves... Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was investigated with dry reforming of methane.Experimental results showed that the hydrotalcite-like precursors could be completely decomposed and partly reduced by cold plasma jet,and the Nicontained catalysts exhibited much higher activity than the catalyst without Ni.Especially,the catalyst with Ni/Co ratio of 8/2 achieved not only the highest conversions of 80.3%and 69.3%for CH4 and CO2,respectively,but also the best stability in 100 h testing.The catalysts were characterized by XRD,XPS,TEM and N2 adsorption techniques,and the results showed that the better performance of the 8Ni2Co bimetallic catalyst was attributed to its higher metal dispersion,smaller metal particle size,as well as the interaction effect between Ni and Co,which were brought by the special catalyst preparation method. 展开更多
关键词 dry reforming of methane Ni-Co bimetallic catalyst cold plasma treatment hydrotalcite-like compound
下载PDF
Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming 被引量:5
7
作者 Wenming Liu Le Li +6 位作者 Sixue Lin Yiwei Luo Zhenghong Bao Yiru Mao Kongzhai Li Daishe Wu Honggen Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期34-47,共14页
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two ... Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(In_(x)Ni@SiO_(2))have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In_(0.5)Ni@SiO_(2))shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases. 展开更多
关键词 methane dry reforming InNi intermetallic alloy Confinement Coking resistance Utilization of greenhouse gases
下载PDF
Methane dry reforming on Ni/La_2Zr_2O_7 treated by plasma in different atmospheres 被引量:4
8
作者 Honggen Peng Youhe Ma +7 位作者 Wenming Liu Xianglan Xu Xiuzhong Fang Jie Lian Xiang Wang Changqing Li Wufeng Zhou Ping Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期416-424,共9页
A series of Ni/La2Zr2O7 pyrochlore catalysts prepared by impregnation method and treated by dielectric barrier discharge(DBD) plasma in different atmospheres and varied sequences were prepared and applied for dry re... A series of Ni/La2Zr2O7 pyrochlore catalysts prepared by impregnation method and treated by dielectric barrier discharge(DBD) plasma in different atmospheres and varied sequences were prepared and applied for dry reforming of methane(DRM). It is found that all of the plasma treated catalysts show evidently improved activity and coke resistance in comparison with the non-plasma treated one. The best performance is achieved on Ni/La2Zr2O7–H2P–C,a catalyst treated in H2 plasma before calcination. TGA-DSC and SEM demonstrate that carbon deposition is significantly suppressed on all of the plasma treated samples. Moreover,XRD and TEM results testify that both Ni O and Ni sizes on the calcined and reduced samples treated by plasma are also decreased,which results in higher Ni metal dispersion on the reduced and used catalysts and enhances the interactions between Ni sites and the support. It is believed that these are the inherent reasons accounting for the promotional effects of plasma treatment on the reaction performance of the Ni/La2Zr2O7 pyrochlore catalysts. 展开更多
关键词 methane dry reforming Ni-based catalysts Pyrochlore support DBD plasma Coke resistance
下载PDF
Nickel ferrite spinel as catalyst precursor in the dry reforming of methane:Synthesis,characterization and catalytic properties 被引量:5
9
作者 Rafik Benrabaa Hamza Boukhlouf +4 位作者 Axel Lfberg Annick Rubbens Rose-Nelle Vannier Elisabeth Bordes-Richard Akila Barama 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期595-604,共10页
Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcin... Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior. 展开更多
关键词 dry reforming of methane NiFe2O4 spinel hydrothermal synthesis coprecipitation isopropanol decomposition
下载PDF
Tuning combined steam and dry reforming of methane for “metgas”production: A thermodynamic approach and state-of-the-art catalysts 被引量:5
10
作者 Karam Jabbour 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期54-91,I0003,共39页
Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methano... Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations. 展开更多
关键词 Combined steam and dry reforming of methane Thermodynamic equilibrium analysis "Metgas"production Nickel-based catalysts Heterogeneous catalysis Structure-activity relationship
下载PDF
Dry reforming of methane on active and coke resistant Ni/Y_2Zr_2O_7 catalysts treated by dielectric barrier discharge plasma 被引量:3
11
作者 Xiuzhong Fang Jie Lian +7 位作者 Kaiwen Nie Xianhua Zhang Yanfeng Dai Xianglan Xu Xiang Wang Wenming Liu Changqing Li Wufeng Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第5期825-831,共7页
In this study, Ni/YZrOcatalysts prepared with impregnation method and treated by dielectric barrier discharge plasma(DBD) in different atmospheres have been investigated for methane dry reforming. It is revealed by H-... In this study, Ni/YZrOcatalysts prepared with impregnation method and treated by dielectric barrier discharge plasma(DBD) in different atmospheres have been investigated for methane dry reforming. It is revealed by H-TPR that plasma treatment can enhance the interaction between Ni O/Ni particles and the YZrOpyrochlore support. Therefore, catalysts with smaller Ni O and Ni grains sizes, higher metallic Ni active surface areas can be achieved, as evidenced by XRD, TEM and Hadsorption-desorption measurements. As a consequence, the plasma-treated catalysts show significantly improved activity, stability and coke resistance, as testified by the TEM and TGA-DSC results. Plasma treatment in H/Ar gas mixture is found to be the best condition to prepare Ni/YZrO, which can be used to obtain a catalyst with the highest activity, stability and most potent coke resistance. It is believed that the smaller Ni grain size and higher metallic Ni active surface area induced by plasma treatment are the inherent reasons accounting for the promoted reaction performance of the Ni/YZrOpyrochlore catalysts. 展开更多
关键词 Plasma treatment Y2Zr2O7 pyrochlore support Supported Ni catalysts methane dry reforming Coke resistance
下载PDF
Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al_2O_3 被引量:4
12
作者 Amin Aziznia Hamid Reza Bozorgzadeh +2 位作者 Naser Seyed-Matin Morteza Baghalha Ali Mohamadalizadeh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第4期466-475,共10页
In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature ra... In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al2O3 catalysts are studied. When CH4/CO2 ratio in the feed is 1/2, the syngas of low Ha/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide. When Ni catalysts are used in the plasma reaction, H2/CO ratios in the products are slightly modified, selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed. 展开更多
关键词 dry reforming of methane synthesis gas hybrid catalyst plasma Ni/γ-Al2O3 discharge power
下载PDF
Photocatalytic dry reforming of methane by rhodium supported monoclinic TiO_(2)-B nanobelts 被引量:2
13
作者 Masaru Kushida Akira Yamaguchi Masahiro Miyauchi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期562-571,I0015,共11页
The conversion of methane and carbon dioxide into syngas(dry reforming of methane;DRM)has attracted attention owing to the potential to reuse greenhouse gases.Titanium dioxide(TiO_(2))-based photocatalysts,which have ... The conversion of methane and carbon dioxide into syngas(dry reforming of methane;DRM)has attracted attention owing to the potential to reuse greenhouse gases.Titanium dioxide(TiO_(2))-based photocatalysts,which have been widely commercialized owing to their high efficiency,non-toxicity,and low cost,are strongly desired in DRM.Here,we report a monoclinic-phase TiO_(2)-B nanobelts-supported rhodium(Rh/TiO_(2)-B nanobelts)catalyst that efficiently promotes DRM under ultraviolet light irradiation at low temperatures.Photogenerated holes in the TiO_(2)-B nanobelts were used to oxidize methane,while the electrons were trapped in rhodium to reduce carbon dioxide.Rh/TiO_(2)-B nanobelts exhibited considerably higher durability and activity than Rh-loaded conventional TiO_(2)(anatase and rutile),owing to the lattice and/or surface oxygen reactivity in TiO_(2)-B nanobelts,which was suggested by X-ray photoelectron spectroscopy measurements and photocatalytic performance tests under an atmosphere of methane alone.This study paves the path for the effective utilization of methane by constructing active TiO_(2)-based nanometal photocatalysts. 展开更多
关键词 Photocatalysis dry reforming of methane Greenhouse gas conversion Gas-phase reaction Titanium dioxide TiO_(2)-B
下载PDF
Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO_(2) and γ-Al_(2)O_(3) supported Ni and Ni-Ce catalysts 被引量:2
14
作者 Yimin Zhang Ruiming Zeng +4 位作者 Yun Zu Linhua Zhu Yi Mei Yongming Luo Dedong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期76-90,共15页
The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical... The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical catalysts of SiO_(2) and γ-Al_(2)O_(3) supported Ni and Ni-Ce were designed and prepared.Importantly,the difference in the chemical speciations of active sites on the Ni-based catalysts is revealed by advanced characterizations and further estimates respective catalytic performance for LTDRM.Results show that larger[Ni0-]particles mixed with[Ni-O-Sin])species on the Ni/SiO_(2)(R)make CH_(4) excessive decomposition,leading to poor activity and stability.Once the Ce species is doped,however,superior activity(59.0%CH_(4) and 59.8%CO_(2) conversions),stability and high H_(2)/CO ratio(0.96)at 600℃ can be achieved on the Ni-Ce/SiO_(2)(R),in comparison with other catalysts and even reported studies.The improved performance can be ascribed to the formation of integral([Ni0_(n))]-[CeⅢ-□-CeⅢ])species on the Ni-Ce/SiO_(2)(R)catalyst,containing highly dispersed[Ni]particles and rich oxygen vacancies,which can synergistically establish a new stable balance between gasification of carbon species and CO_(2) dissocia-tion.With respect to Ni-Ce/γ-Al_(2)O_(3)(R),the Ni and Ce precursors are easily captured by extra-framework Al_(n)-OH groups and further form stable isolated([Ni0_(n))]-[Ni-O-Al_(n)])and[CeⅢ-O-Al_(n)]species.In such a case,both of them preferentially accelerate CO_(2) adsorption and dissociation,causing more car-bon deposition due to the disproportionation of superfuous CO product.This deep distinguishment of chemical speciations of active sites can guide us to further develop new efficient Ni-based catalysts for LTDRM in the future. 展开更多
关键词 CO_(2)dry reforming of methane LOW-TEMPERATURE Ni-based catalysts Chemical speciations reforming reaction mechanisms
下载PDF
Interface-directed epitaxially growing nickle ensembles as efficient catalysts in dry reforming of methane 被引量:1
15
作者 Ping Wang Song Wei +3 位作者 Shiyi Wang Ronghe Lin Xiaoling Mou Yunjie Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期502-513,I0014,共13页
Supported nickel catalysts are promising candidates for dry reforming of methane, but agglomeration of Ni^(0) and coke deposition hinder the industrial applications. Herein, we report a novel interface-directed synthe... Supported nickel catalysts are promising candidates for dry reforming of methane, but agglomeration of Ni^(0) and coke deposition hinder the industrial applications. Herein, we report a novel interface-directed synthetic approach to construct distinct metal ensembles by carefully tuning the compositions of the carriers. A Zr-Mn-Zn ternary oxide-supported Ni catalyst, together with the respective binary oxide-supported analogues, was synthesized by adopting a sequential co-precipitation and wetness impregnation method. Combined characterization techniques identify distinct catalyst models, including (i) conventional NiO nanoparticles with different sizes on Zr-Mn and Zr-Zn, and (ii) epitaxially growing NiO ensembles of a few nanometers thickness at the periphery of ZnO_(x) particles. These catalysts exhibit divergent responses in the catalytic testing, with the ternary oxide system significantly outperforming the binary analogues. The strong electronic interactions between Mn-Ni increase Ni dispersion and the activity while the stability is strengthened upon Zn addition. Both high activity, high selectivity, and remarkable stability are attained upon co-adding Mn and Zn. The interfaces between Ni and Zr-Mn-Zn rather than the physical contacts of individual oxide-supported analogues through mechanical mixing are keys for the outstanding performance. 展开更多
关键词 methane dry reforming NICKEL INTERFACE Epitaxial growth Structure-performance relationship
下载PDF
Modeling and optimization of methane dry reforming over Ni-Cu/Al_2O_3 catalyst using Box-Behnken design 被引量:1
16
作者 Seyedeh Molood Masoom Nataj Seyed Mehdi Alavi Golshan Mazloom 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1475-1488,共14页
In this work the effects of the contents of nickel (5, 7.5, 10 wt%) and copper (0, 1, 2 wt%) and reac- tion temperature (650, 700, 750 ℃) on the catalytic performance of Ni-Cu/Al_2O_3 catalyst in methane dry re... In this work the effects of the contents of nickel (5, 7.5, 10 wt%) and copper (0, 1, 2 wt%) and reac- tion temperature (650, 700, 750 ℃) on the catalytic performance of Ni-Cu/Al_2O_3 catalyst in methane dry reforming were evaluated using Box-Behnken design in order to optimize methane conversion, H_2/CO ratio and the catalyst deactivation. Different catalysts were prepared by co-impregnation method and characterized by XRD, BET, H_2-TPR, FESEM and TG/DTA analyses. The results revealed that copper addi- tion improved the catalyst reducibility. Promoted catalyst with low amounts of Cu gave higher activity and stability with high resistance to coke deposition and agglomeration of active phase especially during the reaction. However catalysts with high amounts of Cu were less active and rather deactivated due to the active sites sintering as well as Ni covering by Cu-enriched phase. The optimal conditions were de- termined by desirability function approach as 10 wt% of Ni, 0.83 wt% of Cu at 750℃. CH_4 conversion of 95.1%, H_2/CO ratio of 1 and deactivation of 1.4% were obtained experimentally under optimum conditions, which were in close agreement with the values oredicted hv the developed model. 展开更多
关键词 methane dry reforming Copper addition Ni-based catalyst SYNGAS Box-Behnken design
下载PDF
Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane 被引量:1
17
作者 Jaylin Sasson Bitters Tina He +3 位作者 Elizabeth Nestler Sanjaya D.Senanayake Jingguang G.Chen Cheng Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期124-142,共19页
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of... Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation. 展开更多
关键词 dry reforming of methane Carbon dioxide Bimetallic catalysts Coke formation Catalyst stability
下载PDF
Methane Dry Reforming over Alumina Supported Co Catalysts
18
作者 Sergio L. González Cortés Malcolm L. H. Green 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第4期457-461,共5页
A series of Co/γ-Al_2O_3 catalysts were prepared with the impregnation method and characterized by means of the BET specific surface area, X-ray diffraction(XRD), thermogravimetric analysis(TGA) and Laser Raman spect... A series of Co/γ-Al_2O_3 catalysts were prepared with the impregnation method and characterized by means of the BET specific surface area, X-ray diffraction(XRD), thermogravimetric analysis(TGA) and Laser Raman spectroscopy. The Co/γ-Al_2O_3 catalysts were activated by using H_2, 20%CH_4/H_2 or CH_4, respectively. There was no obvious difference between the activities of the Co/γ-Al_2O_3 catalyst activated by using the different activation methods for methane dry reforming. The catalytic properties of the Co/γ-Al_2O_3 catalysts with different Co loadings were also investigated. The optimized Co loading for the Co/γ-Al_2O_3 catalyst pretreated with 20% CH_4/H_2 is around 12%(mass fraction). 展开更多
关键词 methane dry reforming Alumina supported cobalt catalysts Catalytic deactivation
下载PDF
Profitability Analysis of Selected Steam Methane Reforming Methods for Hydrogen Production
19
作者 Chibuzor Chinweoke Okechukwu Sunday Boladale Alabi 《Journal of Power and Energy Engineering》 2022年第8期45-53,共9页
One of the matured methods for producing hydrogen in bulk is steam methane reforming (SMR). The two commercial aspects of producing hydrogen from SMR are SMR with shift reactor (SR) and SMR with dry methane reforming ... One of the matured methods for producing hydrogen in bulk is steam methane reforming (SMR). The two commercial aspects of producing hydrogen from SMR are SMR with shift reactor (SR) and SMR with dry methane reforming (DRM). Although SMR with SR produces high hydrogen yield, it emits a large quantity of carbon dioxide (CO<sub>2</sub>). On the contrary, SMR and DRM produce low hydrogen yield but favorably emit a low quantity of CO<sub>2</sub>. However, it is not obvious which of these methods is more favourable economically. Consequently, using UNISIM Software Package, this study investigates three SMR methods namely SMR with SR, SMR with DRM and SMR with the combination of DRM and SR for the purpose of determining the most favourable route for producing hydrogen. This was done on the basis of feedstock rate of 100 kmol/hr of methane which reacted with 250 kmol/hr of steam for 8000 hrs annually using the rate of CO<sub>2</sub> and CO emissions (CO<sub>x</sub>) and the plant net profit percentage as performance indices. The profitability analysis shows that SMR/SR process is the most profitable process with a net profit percentage of 41.3%. Moreover, SMR/SR process has the highest yield and interestingly lowest CO<sub>x</sub> emission rate. It is therefore concluded that the most favourable process route, technically and economically, is SMR/SR for the production of hydrogen using methane as feedstock. 展开更多
关键词 HYDROGEN Steam methane reforming dry methane reforming Carbon Oxides
下载PDF
Nickel-based cerium zirconate inorganic complex structures for CO_(2)valorisation via dry reforming of methane
20
作者 Juan Luis Martín-Espejo Loukia-Pantzechroula Merkouri +3 位作者 Jesús Gándara-Loe José Antonio Odriozola Tomas Ramirez Reina Laura Pastor-Pérez 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期12-23,共12页
The increasing anthropogenic emissions of greenhouse gases(GHG)is encouraging extensive research in CO_(2)utilisation.Dry reforming of methane(DRM)depicts a viable strategy to convert both CO_(2)and CH4into syngas,a w... The increasing anthropogenic emissions of greenhouse gases(GHG)is encouraging extensive research in CO_(2)utilisation.Dry reforming of methane(DRM)depicts a viable strategy to convert both CO_(2)and CH4into syngas,a worthwhile chemical intermediate.Among the different active phases for DRM,the use of nickel as catalyst is economically favourable,but typically deactivates due to sintering and carbon deposition.The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts.XRD and TPR-H2analyses confirmed the existence of different phases according to the Ni loading in these materials.Besides,superficial Ni is observed as well as the existence of a CeNiO_(3)perovskite structure.The catalytic activity was tested,proving that 10 wt.%Ni loading is the optimum which maximises conversion.This catalyst was also tested in long-term stability experiments at 600and 800℃in order to study the potential deactivation issues at two different temperatures.At 600℃,carbon formation is the main cause of catalytic deactivation,whereas a robust stability is shown at 800℃,observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO_(2)and biogas mixtures upgrading catalysts. 展开更多
关键词 CO_(2)conversion dry reforming of methane Nickel catalysts PYROCHLORE Cerium zirconate
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部