Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-...Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-term drying shrinkage were discussed. The mass loss was measured by the weighting method and the pore structure was characterized using three different methods, including the light microscopy, the mercury intrusion porosimetry(MIP), and the nitrogen adsorption/desorption(NAD) experiments, and the correlations among them were researched. The results show that drying shrinkage process of thermal insulation mortar includes three steps with increasing curing time: the acceleration period(before 7 d), the deceleration period(7-365 d), and the metastable period(after 365 d). Drying shrinkage in the first stage(7 d before) increases quickly owing to the fast water loss, and its development in the last two stages is attributed to the increment of the pore volume of mortar with the radius below 50 nm, especially the increment of the pore volume fraction of the pore radius within the size range between 7.3 nm and 12.3 nm. There is no change in the drying shrinkage development trend of mortar with fly ash addition, and three steps in the service life, but fly ash addition in the mortar restrains its value. There is a linear relationship between the drying shrinkage and fly ash content, which means that drying shrinkage reduces with fly ash addition.展开更多
The use of fine recycled aggregates as raw material in the production of mortars appears as a good alternative to minimize waste disposal, so as to reduce natural resources consumption and to find and supply suitable ...The use of fine recycled aggregates as raw material in the production of mortars appears as a good alternative to minimize waste disposal, so as to reduce natural resources consumption and to find and supply suitable substitutes for natural aggregates. However, the use of this alternative material in a safe way must be carried out by a wide investigation of its long term behavior. In this way, this paper will examine the mechanical strength, physical properties and drying shrinkage of mortar, which use recycled fine aggregates that have originated from construction and demolition waste (CDW) containing mortar (55%), ceramic (26%) and concrete (16%). Two natural mortars, made with natural sand, were produced with cement/sand ratios of 1:4 and 1:8 (by weight) and a fixed consistency index of 260 +10 mm. Recycled mortar was produced with 50% of substitution rate, in volume, of natural aggregate by recycled one. Results show that recycled mortars present higher total porosity, absorption rate and drying shrinkage than reference mortar.展开更多
A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF)...A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF). Six mortar mixtures including control Portland cement (PC) and FA, GBFS and SF mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 20% and 35%, GBFS replaced the cement at the replacement ratios of 40%, SF replaced the cement at the replacement ratios of 8% and the blended mixtures with 20% FA, 20% GBFS and 8% SF. Water-cementitious materials ratio and sand-cementitious materials ratio were 0.4 and 2.0 for all mixtures, respectively. The mixtures were cured at 65% relative humidity and 20℃. The drying shrinkage value, initial cracking time and cracking width of the mortar samples were measured. The results show that all the mortar mixture containing FA exhibited the decrease of drying shrinkage. Moreover, initial cracking time was markedly delayed, and the crack width of the initial crack was reduced. However, the incorporations of various ratios of GBFS and SF led to an increase of drying shrinkage, initial cracking time and cracking width as compared to control mixture.展开更多
基金Funded by the National Key Technology R&D Program of China during the 12th Five-year Plan(No.2012BAJ20B02)
文摘Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-term drying shrinkage were discussed. The mass loss was measured by the weighting method and the pore structure was characterized using three different methods, including the light microscopy, the mercury intrusion porosimetry(MIP), and the nitrogen adsorption/desorption(NAD) experiments, and the correlations among them were researched. The results show that drying shrinkage process of thermal insulation mortar includes three steps with increasing curing time: the acceleration period(before 7 d), the deceleration period(7-365 d), and the metastable period(after 365 d). Drying shrinkage in the first stage(7 d before) increases quickly owing to the fast water loss, and its development in the last two stages is attributed to the increment of the pore volume of mortar with the radius below 50 nm, especially the increment of the pore volume fraction of the pore radius within the size range between 7.3 nm and 12.3 nm. There is no change in the drying shrinkage development trend of mortar with fly ash addition, and three steps in the service life, but fly ash addition in the mortar restrains its value. There is a linear relationship between the drying shrinkage and fly ash content, which means that drying shrinkage reduces with fly ash addition.
文摘The use of fine recycled aggregates as raw material in the production of mortars appears as a good alternative to minimize waste disposal, so as to reduce natural resources consumption and to find and supply suitable substitutes for natural aggregates. However, the use of this alternative material in a safe way must be carried out by a wide investigation of its long term behavior. In this way, this paper will examine the mechanical strength, physical properties and drying shrinkage of mortar, which use recycled fine aggregates that have originated from construction and demolition waste (CDW) containing mortar (55%), ceramic (26%) and concrete (16%). Two natural mortars, made with natural sand, were produced with cement/sand ratios of 1:4 and 1:8 (by weight) and a fixed consistency index of 260 +10 mm. Recycled mortar was produced with 50% of substitution rate, in volume, of natural aggregate by recycled one. Results show that recycled mortars present higher total porosity, absorption rate and drying shrinkage than reference mortar.
基金Funded by the 863 Program from Ministry of Science and Technology of China(2005AA332010) the Key Technologies R&D Program from Department of Science and Technology. Hubei Province (200410G0121)
文摘A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF). Six mortar mixtures including control Portland cement (PC) and FA, GBFS and SF mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 20% and 35%, GBFS replaced the cement at the replacement ratios of 40%, SF replaced the cement at the replacement ratios of 8% and the blended mixtures with 20% FA, 20% GBFS and 8% SF. Water-cementitious materials ratio and sand-cementitious materials ratio were 0.4 and 2.0 for all mixtures, respectively. The mixtures were cured at 65% relative humidity and 20℃. The drying shrinkage value, initial cracking time and cracking width of the mortar samples were measured. The results show that all the mortar mixture containing FA exhibited the decrease of drying shrinkage. Moreover, initial cracking time was markedly delayed, and the crack width of the initial crack was reduced. However, the incorporations of various ratios of GBFS and SF led to an increase of drying shrinkage, initial cracking time and cracking width as compared to control mixture.