期刊文献+
共找到2,588篇文章
< 1 2 130 >
每页显示 20 50 100
Effects of Nitrogen Dosage on the Yield and Nitrogen Use Efficiency of Machine Transplanted Rice Using Dry Soil Preparation in Rice Paddy Field
1
作者 张彦兵 唐小洁 +2 位作者 陈守用 李东升 杜洪艳 《Agricultural Science & Technology》 CAS 2017年第11期2123-2126,共4页
[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With c... [Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field. 展开更多
关键词 RICE dry soil preparation in rice paddy field Nitrogen dosage YIELD
下载PDF
Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Profile of Loess Tableland in China 被引量:11
2
作者 CHENG Li-ping LIU Wen-zhao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第6期1382-1392,共11页
Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep... Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep loess proifle, which is critical for maintaining the function of the“soil water pool”is rarely studied because deep proifle soil samples are dififcult to collect. In this study, four experimental plots were established in 2005 to represent different farming systems on the Changwu Tableland:fallow land, fertilized cropland, unfertilized cropland, and continuous alfalfa. The soil water content in the 15-m-deep loess proifles was monitored continuously from 2007 to 2012 with the neutron probe technique. The results showed that temporal variations in soil water proifles differed among the four farming systems. Under fallow land, the soil water content increased gradually over time, ifrst in the surface layers and later in the deep soil layers. In contrast, the soil water content decreased gradually under continuous alfalfa. The distributions of soil water in deep soil layers under both fertilized and unfertilized cropland were relatively stable over time. Thus farming system signiifcantly affected soil water content. Seven years after the start of the experiment, the soil water contents in the 15-m-deep proifles averaged 23.4%under fallow land, 20.3%under fertilized cropland, 21.6%under unfertilized cropland, and 16.0%under continuous alfalfa. Compared to measurements at the start of the experiment, both fallow land and unfertilized cropland increased soil water storage in the 15-m loess proifles. In contrast, continuous alfalfa reduced soil water storage. Fertilized cropland has no signiifcant effect on soil water storage. These results suggest that deep soil water can be replenished under the fallow and unfertilized farming systems. Dry soil layers (i.e., those which have soil water content less than the stable ifeld water capacity) in the subsoil of the Changwu Tableland region can be classiifed as either temporary dry soil layers or persistent dry soil layers. Temporary dry soil layers, which typically form under annual crops, often disappear during wet years. Persistent dry soil layers generally develop under perennial vegetation. Even after removing the vegetation, persistent dry soil layers remain for several decades. This study provides information useful for the conservation and utilization of soil water resources in the Loess Tableland. 展开更多
关键词 farming system temporal variability soil water dried soil layer Loess Plateau
下载PDF
Effects of Periodical Soil Drying and Leaf Water Potential on the Sensitivity of Stomatal Response to Xylem ABA 被引量:6
3
作者 梁建生 张建华 《Acta Botanica Sinica》 CSCD 1999年第8期855-861,共7页
The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a g... The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 nmol/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split_root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole_root_drying treatment than those in the semi_root_drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic. 展开更多
关键词 Xylem ABA Stomatal sensitivity Leaf water potential Periodical soil drying cycle
下载PDF
Revegetation with artificial plants improves topsoil hydrological properties but intensifies deep-soil drying in northern Loess Plateau,China 被引量:8
4
作者 ZHANG Qingyin JIA Xiaoxu +1 位作者 ZHAO Chunlei SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2018年第3期335-346,共12页
Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type an... Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type and human management measures. We focused on the analysis of the effects of vegetation type on soil hydrological properties and soil moisture variation in the 0–400 cm soil layer based on a long-term(2004―2016) experimental data in the northern Loess Plateau region, China. Soil bulk density(BD), saturated soil hydraulic conductivity(Ks), field capacity(FC) and soil organic carbon(SOC) in 2016, as well as the volumetric soil moisture content during 2004–2016, were measured in four vegetation types, i.e., shrubland(korshinsk peashrub), artificial grassland(alfalfa), fallow land and cropland(millet or potato). Compared with cropland, revegetation with peashrub and alfalfa significantly decreased BD and increased Ks, FC, and SOC in the 0–40 cm soil layer, and fallow land significantly increased FC and SOC in the 0–10 cm soil layer. Soil water storage(SWS) significantly declined in shrubland and grassland in the 40–400 cm soil layer, causing severe soil drought in the deep soil layers. The study suggested that converting cropland to grassland(alfalfa) and shrubland(peashrub) improved soil-hydrological properties, but worsened water conditions in the deep soil profile. However, natural restoration did not intensify deep-soil drying. The results imply that natural restoration could be better than revegetation with peashrub and alfalfa in terms of good soil hydrological processes in the semi-arid Loess Plateau region. 展开更多
关键词 soil drying soil hydrological property soil moisture vegetation restoration Loess Plateau
下载PDF
Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice ratooning system 被引量:6
5
作者 Chang Zheng Yuechao Wang +4 位作者 Shen Yuan Sen Xiao Yating Sun Jianliang Huang Shaobing Peng 《The Crop Journal》 SCIE CSCD 2022年第1期280-285,共6页
Yield loss(Y_(Loss)) in the ratoon crop due to crushing damage to left stubble from mechanical harvesting of the main crop is a constraint for wide adoption of mechanized rice ratooning technology.Soil drying before t... Yield loss(Y_(Loss)) in the ratoon crop due to crushing damage to left stubble from mechanical harvesting of the main crop is a constraint for wide adoption of mechanized rice ratooning technology.Soil drying before the harvest of the main crop has been proposed to overcome this problem.The objective of this study was to determine the effect of soil drying during the mid-to-late grain filling stage of the main crop on grain yield of the ratoon crop in a mechanized rice ratooning system.Field experiments were conducted to compare Y_(Loss) between light(LD) and heavy(HD) soil drying treatments in Hubei province,central China in 2017 and 2018.Y_(Loss) was calculated as the percentage of yield reduction in the ratoon crop with the main crop harvested mechanically,relative to the grain yield of the ratoon crop with the main crop harvested manually.In comparison with LD,soil hardness was increased by 42.8%-84.7% in HD at the 5-20 cm soil depth at maturity of the main crop.Soil hardness at 5 and 10 cm depths reached respectively 4.05 and 7.07 kg cm^(-2) in HD.Soil drying treatment did not significantly affect the grain yield of the main crop.Under mechanical harvesting of the main crop,HD increased the grain yield of the ratoon crop by 9.4% relative to LD.Consequently,Y_(Loss) was only 3.4% in HD,in contrast to 16.3% in LD.The differences in grain yield and Y_(Loos) between the two soil drying treatments were explained mainly by panicles m^(-2),which was increased significantly by HD in the track zone of the ratoon crop compared with LD.These results suggest that heavy soil drying practice during the mid-to-late grain filling stage of the main crop is effective for reducing Y_(Loss) of the ratoon crop in a mechanized rice ratooning system. 展开更多
关键词 Crushing damage Mechanical harvesting Ratoon rice soil drying Yield loss
下载PDF
Polyamines mediate the effect of post-anthesis soil drying on starch granule size distribution in wheat kernels 被引量:2
6
作者 Yunji Xu Mengting Qiu +3 位作者 Yinyin Li Xiyang Qian Junfei Gu Jianchang Yang 《The Crop Journal》 SCIE CAS CSCD 2016年第6期444-458,共15页
Polyamines(PAs) are important endogenous plant growth regulators responding to environmental stress and mediating many physiological processes including grain filling in cereals.This study investigated whether PAs med... Polyamines(PAs) are important endogenous plant growth regulators responding to environmental stress and mediating many physiological processes including grain filling in cereals.This study investigated whether PAs mediate the effect of post-anthesis soil drying on starch granule size distribution,starch content,and weight of superior and inferior kernels of wheat(Triticum aestivum L.).Two wheat cultivars were grown in pots.Three treatments,well-watered(WW),moderate soil drying(MD) and severe soil drying(SD),were imposed from 9 days post-anthesis until maturity.PA levels in kernels and small,medium and large granules were measured.The results showed that superior kernels had much higher free spermidine(Spd) and free spermine(Spm) concentrations,larger volumes of medium starch granules,and smaller-sized large granules than did inferior kernels under all the treatments.Compared to WW,MD significantly increased the concentrations of free Spd and free Spm,activities of soluble starch synthase and granule-bound starch synthase,volume of medium granules,and starch content and kernel weight of inferior kernels,and decreased the size of large granules.SD produced the opposite effect.Application of Spd or Spm to spikes produced effects similar to those of MD,and application of an inhibitor of Spd and Spm synthesis produced effects similar to those of SD.These results suggest that PAs mediate the effect of post-anthesis soil drying on starch biosynthesis in wheat kernels by regulating key enzymes in starch synthesis and that elevated PA levels under MD increase the volume of medium granules and kernel weight of inferior kernels. 展开更多
关键词 Polyamines Starch granule size distribution soil drying Triticum aestivum L.(wheat)
下载PDF
Effect of drying environment on engineering properties of an expansive soil and its microstructure 被引量:12
7
作者 KONG Ling-wei WANG Min +1 位作者 GUO Ai-guo WANG Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1194-1201,共8页
This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under di... This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution. 展开更多
关键词 Expansive soils drying environment Shrinkage Strength Pore size distribution Triaxial test
下载PDF
Identification of microRNAs regulating grain filling of rice inferior spikelets in response to moderate soil drying post-anthesis 被引量:1
8
作者 Zhenning Teng Yinke Chen +9 位作者 Youqing Yuan Yaqiong Peng Yake Yi Huihui Yu Zhenxie Yi Jianchang Yang Yan Peng Meijuan Duan Jianhua Zhang Nenghui Ye 《The Crop Journal》 SCIE CSCD 2022年第4期962-971,共10页
The grain filling of inferior spikelets is much less complete than that of superior spikelets in rice cultivars with large panicles and numerous spikelets and is promoted by moderate soil drying(MD)post-anthesis.A gro... The grain filling of inferior spikelets is much less complete than that of superior spikelets in rice cultivars with large panicles and numerous spikelets and is promoted by moderate soil drying(MD)post-anthesis.A growing body of evidence has shown that microRNAs function in regulating grain development.However,little is known about the mechanism of microRNA control of grain filling of inferior spikelets in response to MD.In this study,grain filling of inferior spikelets was promoted by MD treatment in Nipponbare.Small-RNA profiling at the most active grain-filling stage was conducted in inferior spikelets under control(CK)and MD treatment.Of 521 known and 128 novel miRNAs,38 known and 9 novel miRNAs were differentially expressed between the CK and MD treatments.Target genes of differentially expressed miRNAs were involved in multiple developmental and signaling pathways associated with catalytic activity,carbohydrate metabolism,and other functions.Both miR1861 and miR397 were upregulated by MD,leading to a decrease in OsSBDCP1 and OsLAC,two negative regulators of SSIIIa activity and BR signaling,respectively.In contrast,miR1432 abundance was reduced by MD,resulting in upregulation of OsACOT and thus an elevated content of both ABA and IAA.These results suggest that both starch synthesis and phytohormone biosynthesis are regulated by differentially expressed miRNAs in inferior spikelets in response to MD treatment.Our results suggest the molecular mechanisms by which miRNAs regulate grain filling in inferior spikelets of rice under moderate soil drying,providing potential application in agriculture to increase rice yields by genetic approaches. 展开更多
关键词 Moderate soil drying Grain filling Inferior spikelet MicroRNA RICE
下载PDF
Spatiotemporal variation of soil organic carbon in the cultivated soil layer of dry land in the South-Western Yunnan Plateau, China 被引量:6
9
作者 ZHAO Ji-xia DAI Fu-qiang +2 位作者 HE Shou-jia ZHANG Qing LIU Gang-cai 《Journal of Mountain Science》 SCIE CSCD 2017年第12期2484-2497,共14页
The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiote... The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiotemporal variability of SOC in the southwestern mountainous region of China. Thus, this study aimed to explore spatiotemporal changes of SOC in the cultivated soil layer of dry land in Mojiang County,Yunnan Province, China. Data were obtained from the second national soil survey(SNSS) of 1985 and soil tests for fertilizer application carried out by the Mojiang Agricultural Bureau in 2006. The ANOVA test was applied to determine any significant differences between the datasets, while semivariogram analysis was performed on geostatistics via an ordinary Kriging method in order to map spatial patterns of soil organic carbon density(SOCD). The results revealed that SOCD in the cultivated soil layer significantly decreased from 3.93 kg m^(-2) in 1985 to 2.89 kg m^(-2) in 2006, with a total soil organic carbon stock(SOCS) decrease of 41.54×10~4 t over the same period. SOCS levels fell most markedly in yellow-brown soil at a rate of51.52%, while an increase of 8.70% was found in the analysed latosol. Geostatistical analysis also showed that the recorded changes in SOCD between 1985 and2006 were spatially structured. The decreasing trend might be attributed to the combined action of intense cultivation, major crop residue removal without any protective tillage measures, unreasonable fertilization and natural climatic diversity inducing a large decrease in SOC in the studied cultivated dry land region of Mojiang County. Therefore, management measures such as protective tillage should be undertaken in order to enhance soil C sequestration. 展开更多
关键词 soil organic carbon Spatiotemporal changes dry land Cultivated soil layer Yunnan Plateau
下载PDF
Post-fire soil nutrient dynamics in a tropical dry deciduous forest of Western Ghats,India 被引量:3
10
作者 Satyam Verma Dharmatma Singh +1 位作者 Ajeet Kumar Singh Shanmuganathan Jayakumar 《Forest Ecosystems》 SCIE CSCD 2019年第1期67-75,共9页
Background: The effect of forest fire on soil is complex and relatively less understood than its above ground effect.Understanding the effect of fire on forest soils can allow improving management of valuable forest e... Background: The effect of forest fire on soil is complex and relatively less understood than its above ground effect.Understanding the effect of fire on forest soils can allow improving management of valuable forest ecosystems as adequate and proper information is very important for efficient management. We have studied the recovery of soil properties after fire, using a chronosequence approach(two, five and fifteen years after fire and control). Soil samples were collected from each plot of four fire patches(B0, B2, B5 & B15) from three different depths viz. 0–10(Top), 10–20(Middle), and 20–30 cm(Bottom).Results: Soil organic carbon was lower than unburned plots after the fire and could not recover to the level of unburned plot(B0) even in 15 years. Total N, available P, and extractable K were lower 2-years and 5-years after the fire but are higher than unburned plot after 15-years. Available nitrogen(NO_3^- and NH_4^+) remain unchanged or higher than B0 in burned patches. Soil pH, Bulk Density, Water Holding Capacity, and Electrical Conductivity was lower initially after the fire. Forest fires have affected soil properties considerably. The response of soil properties varied with years after fire and soil depth.Conclusion: Forest fires occur very frequently in the study area. Significant quantities of carbon and total nitrogen are lost to the atmosphere by burning of litter, duff, and soil OM. Because nitrogen is one of the most important soil nutrients, the recapture of N lost by volatilization during a fire must receive special attention. Long-term studies are required to better understand the recovery of soil nitrogen. 展开更多
关键词 soil properties WESTERN Ghats TROPICAL dry DECIDUOUS FOREST FOREST fire FOREST soilS
下载PDF
Three-year field study on grass growth and soil hydrological properties in biochar-amended soil 被引量:1
11
作者 Haowen Guo Charles Wang Wai Ng +2 位作者 Junjun Ni Qi Zhang Yuchen Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2764-2774,共11页
Field monitoring was conducted to investigate and quantify the long-term effects of peanut shell biochar on soil-grass interaction over three years.Three 10 m5 m grassed plots were constructed in completely decomposed... Field monitoring was conducted to investigate and quantify the long-term effects of peanut shell biochar on soil-grass interaction over three years.Three 10 m5 m grassed plots were constructed in completely decomposed granitic soil.Two of them were amended,respectively,with 5%and 10%biochar contents(m^(3)/m^(3))for grass growth,while the third was without biochar amendment.During the threeyear monitoring,plant characteristics,saturated water permeability(k_(s))of grassed soil and soil suction were measured.The monitored results show that the grass leaf area index(LAI)and root length density(RLD)with biochar amendment were improved by 38%and 200%,respectively.In the grassed plot without biochar,a threshold RLD existed with a value of 1.7 cm/cm^(3),beyond which k_(s) raised pronouncedly.The threshold RLD increased by 52%when biochar content increased from 0%to 10%.This implies that biochar may restrict the increase in k_(s) of grassed soil due to the rise in the threshold RLD.The presence of biochar and grass can retain over 100%higher suction after heavy rainfalls,while 54%lower peak suction under evapotranspiration(ET)compared with the non-amended plot.Biochar can alleviate the negative effects on hydraulic properties caused by plant growth and reduce ET-induced excessive water loss.A 5%peanut shell biochar content is recommended for the long-term management of vegetated earthen infrastructures. 展开更多
关键词 soil-grass interaction BIOCHAR LONG-TERM Water infiltration soil drying
下载PDF
Seasonal Dynamics of the Soil Moisture in Yuanmou Dry-Hot Valley of Yunnan 被引量:1
12
作者 Yuanjiao Zhao Wenhua Su +2 位作者 Guangfei Zhang Fengtao Cui Rui Zhou 《Meteorological and Environmental Research》 CAS 2013年第4期56-58,共3页
[ Objective] The research aimed to study seasonal dynamics of the soil moisture in Yuanmou Dry-Hot Valley of Yunnan. [ Method] We investigated soil moisture in rainy season in Yuanmou Dry-Hot Valley. By combining comp... [ Objective] The research aimed to study seasonal dynamics of the soil moisture in Yuanmou Dry-Hot Valley of Yunnan. [ Method] We investigated soil moisture in rainy season in Yuanmou Dry-Hot Valley. By combining completed research about soil moisture in dry season, data in rainy and dry seasons were contrasted to study seasonal dynamics of the soil moisture in the zone. [ Resultl Soil moisture in rainy season increased with the depth of soil, but would decrease within 1.0 m below the root layer. The soil moisture of grassland was higher than that of the woodland, while soil moisture of the savanna was higher than that of the woodland but lower than that of the grassland. In addition, compared with soil mois- ture in dry season, it is clear that to avoid forming permanent soil desiccation, based on soil and hydrology conditions in Yuanmou, it is better to plant grass not tree in Yuanmou when we do something about ecological restoration. [ Condusion] The research had certain guidance significance for planting agricultural and economic crops and carrying out ecological restoration in Yuanmou Dry-Hot Valley. 展开更多
关键词 dry-Hot Valley Seasonal dynamics soil moisture content soil desiccation China
下载PDF
Effects of Air-Drying on the Inorganic Phosphorus Forms in Soils
13
作者 FENGKe TANGYan WANGXiao-li LUHai-ming ZHAOHai-tao 《Agricultural Sciences in China》 CAS CSCD 2005年第6期463-468,共6页
After 90 days cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellowbrown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphoru... After 90 days cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellowbrown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphorus (Pi) fractions weremeasured before and after air-drying. The results clearly indicated that the total Pi and their composition differed significantlyamong soil types. The air-drying process increased the total Pi in yellow brown soil and in paddy soil, while decreased thatin red soil. The total Pi could vary to 70% of that before air-drying. The Pi forms in different soils changed to differentextent after air-drying. As to yellow brown soil, Al-P decreased, while O-P and Ca-P increased; as to paddy soil, Al-P andCa-P increased, while Fe-P and O-P remained; as to red soil, Al-P and Fe-P increased, Ca-P remained and O-P reducedobviously. Growth of different plants in soils had effects on Pi forms during the process of air-drying. Therefore, forchemical study of soil phosphorus, application of fresh soil samples can provide more reliable results. 展开更多
关键词 Inorganic phosphorus soil AIR-dryING
下载PDF
Unravelling Effects of Temperature and Soil Moisture Stress Response on Development of Dry Root Rot [<i>Rhizoctonia bataticola</i>(Taub.)] Butler in Chickpea
14
作者 Mamta Sharma Suresh Pande 《American Journal of Plant Sciences》 2013年第3期584-589,共6页
Erratic rainfalls and rise in temperature have become more frequent under the changing scenario of climate particularly in semiarid tropics. As a consequence of it, a drastic shift of chickpea diseases have been recor... Erratic rainfalls and rise in temperature have become more frequent under the changing scenario of climate particularly in semiarid tropics. As a consequence of it, a drastic shift of chickpea diseases have been recorded throughout the major chickpea growing regions in India and elsewhere. Dry root rot (DRR) caused by Rhizoctonia bataticola (Taub.) Butler [Pycnidial stage: Macrophomina phaseolina (Tassi) Goid] was found as a potentially emerging constraint to chickpea production than wilt (Fusarium oxysporum f. sp. ciceris). Increasing incidence of DRR indicate strong influence of climate change variables such as temperature and moisture on the development of disease. The present study therefore was conducted to quantify the role of temperature and soil moisture associated with infection, colonization and development of DRR under controlled environment. The DRR incidence was significantly affected by high temperature and soil moisture deficit. Out of five temperature regimes (15?C, 20?C, 25?C, 30?C and 35?C) and four moisture levels (40%, 60%, 80% and 100%), a combination of high temperature (35?C) and soil moisture content (60%) predisposes chickpea to DRR. The study clearly demonstrates that high temperature coupled with soil moisture deficit is the climate change variables predisposing chickpea to R. bataticola infection, colonization and development. 展开更多
关键词 CHICKPEA Climate Change Drought dry Root ROT soil Moisture TEMPERATURE
下载PDF
Effects of Soil Moisture on Dynamic Distribution of Dry Matter Between Winter Wheat Root and Shoot 被引量:4
15
作者 CHENXiao-yuan LIUXiao-ying LUOYuan-pei 《Agricultural Sciences in China》 CAS CSCD 2003年第10期1144-1150,共7页
The dynamic relationship of dry matter accumulation and distribution between winter wheat root and shoot was studied under different soil water conditions. The dry matter accumulation in root was greatly influenced by... The dynamic relationship of dry matter accumulation and distribution between winter wheat root and shoot was studied under different soil water conditions. The dry matter accumulation in root was greatly influenced by water stress, so as to the final root weight of the treatment with 40% field moisture capacity(FMC) was less than 1/4 of that of the treatment with 80% FMC on average. Water stress during the 3-leaf stage to the tillering stage had the greatest influence on root, and the influence of water stress during the jointing stage to the booting stage on shoot was greater than root. However, water stress during the tillering stage to the booting stage had a balanced effect on root and shoot, and the proportion of dry matter that distributed to root and shoot was almost the same after rewatering. Water recovery during the jointing stage to booting stage could promote R/S, but the increasing degree was related to the duration of water limitation. Soil water condition had the lowest effect on R/S during the flowering stage to the filling stage and the maximal effect on R/S during the jointing stage to the heading stage, R/S of 40% FMC treatment was 20.93 and 126.09% higher than that of 60% FMC and 80% FMC treatments respectively at this period. 展开更多
关键词 soil moisture Winter wheat Root-shoot relation dry matter
下载PDF
Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation 被引量:25
16
作者 ZHOU Qun JU Cheng-xin +4 位作者 WANG Zhi-qin ZHANG Hao LIU Li-jun YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1028-1043,共16页
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than... This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation. 展开更多
关键词 super rice soil water deficit alternate wetting and drying (AWD) grain yield water use efficiency
下载PDF
EFFECTS OF SOIL MOISTURE CONTENT ON DRY NURSERY SEEDLING QUALITY OF LATE DOUBLE CROPPING RICE IN SOUTH CHINA
17
作者 Zhang Xu Huang Nongrong Kong Qingni Lin Daoxuan Liu YanzhuoRice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640Cai Hanxiong Liang Quan Liang Youqiang Liang ChengyingCereal and Oil Crop Production Section, Agricultural Department of Guangdong Province, Guangzhou 510500 《热带亚热带植物学报》 CAS CSCD 1996年第S1期16-23,共8页
In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet n... In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet nursery seedlings, we found a close relationship between soil moisture content and seedling growth. The seedling emergence of dry nursery seedling was more even, tidy and faster, and the survival rate was higher than that of wet nursery seedling. Dry nursery seedlings had small plant stature, slow leaf stretching speed and low individual seedling dry weight, but had high dry/fresh weight ratio. This was abeneficial factor for seedlings to recover from transplanting shock more quickly. As com-pared with the wet nursery seedlings, dry nursery seedlings had poor rooting ability,but had more vigorous white roots and fewer rust roots. It was the possibly important reasonfor dry nursery seedlings to form strong“explosive force”. 展开更多
关键词 LATE double CROPPING rice dry NURSERY SEEDLING SEEDLING quality soil moisture
下载PDF
Status and circulation characteristics of soil water in dryland field of southeast Shanxi Province
18
作者 Zhong Zhao zhan, Zhao Ju bao, Mei Xu rong Institute of Agrometeorology, Chinese Academy of Agricultural Sciences, Beijing 100081, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第4期27-34,共8页
Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern w... Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China. 展开更多
关键词 soil water field water deficit crop utilization ability to soil water dry land southeast of Shanxi Province.
下载PDF
Wet and Dry Season Effects on Select Soil Nutrient Contents of Upland Farms in North Bank Region of the Gambia
19
作者 Ebrima Sonko Daniel N. Tsado +2 位作者 Sidat Yaffa Appollonia A. Okhimamhe Julia Eichie 《Open Journal of Soil Science》 2016年第3期45-51,共7页
The study was conducted in three villages of North Bank Region of the Gambia in 2013 and 2014. We examined wet and dry season effects on select soil nutrient contents of upland farms in North Bank Region of the Gambia... The study was conducted in three villages of North Bank Region of the Gambia in 2013 and 2014. We examined wet and dry season effects on select soil nutrient contents of upland farms in North Bank Region of the Gambia. The objective was to evaluate changes in soil nutrient contents in both wet and dry seasons. Soil samples were collected from three RCBD upland fields with three replications at a depth of 0 - 15 cm and analyzed for pH, Soil Organic Carbon (SOC), and soil moisture content. The gravimetric method of moisture estimation was used. The results showed that soil moisture content, soil TN, and soil pH are significantly different (P < 0.05) during the two seasons. There was no significant difference in SOC between the two seasons in the study area. The study concluded that soil nutrients were more readily available during the wet season than during the dry season probably because there is more soil moisture available in the wet season that facilitates soil nutrient release. The study concludes that soil moisture has to be available in order for some select soil nutrients to be released for plant uptake. 展开更多
关键词 soil Nutrients Wet Season dry Season pH
下载PDF
黄土区深厚土壤严重干化后再植苜蓿地的土壤水分入渗特征
20
作者 滕远 马兵 +4 位作者 吴贤忠 汪星 吕雯 任鸿武 汪治同 《草业学报》 北大核心 2025年第1期66-79,共14页
自然降水是半干旱黄土区土壤水分的唯一来源。为了探究黄土丘陵区深厚土壤干化背景下再种植深根系、多年生植物后的土壤水分入渗对降雨的响应特征,本研究在宁夏南部王洼水土保持试验站采用野外实地大规格土柱模拟干燥化土壤的方法种植苜... 自然降水是半干旱黄土区土壤水分的唯一来源。为了探究黄土丘陵区深厚土壤干化背景下再种植深根系、多年生植物后的土壤水分入渗对降雨的响应特征,本研究在宁夏南部王洼水土保持试验站采用野外实地大规格土柱模拟干燥化土壤的方法种植苜蓿,试验分析2022-2023年每年的3-10月定位观测数据。结果表明:1)能有效产生土壤水分入渗的降雨次数仅占总降雨次数的41.67%,降雨量与入渗量占比为:小雨入渗量占其降雨量的15.89%,中雨入渗量占其降雨量的35.63%,大雨入渗量占其降雨量的52.20%,暴雨入渗量占其降雨量的61.50%,入渗量随着降雨量的增大呈增大的趋势;2)降雨入渗深度小于30 cm的降雨次数占总降雨次数的76.04%,入渗深度在30~80 cm的降雨次数占总降雨次数的18.75%,入渗深度在80 cm以上的降雨次数占总降雨次数的5.21%;3)深层土壤干化背景下种植苜蓿,一龄苜蓿地月尺度土壤剖面水分呈现增加趋势,二龄苜蓿地月尺度土壤剖面水分呈减小趋势,逐月降雨入渗深度(Zm)随月降雨量(Pm)增加呈二次函数增大变化:Z_(m)=-0.0101P_(m)^(2)+3.9426P_(m)(R^(2)=0.9895)。本研究可为黄土高原区深厚土壤严重干化后再植深根系、多年生植物及其可持续发展提供理论与数据支撑。 展开更多
关键词 黄土区 土壤干化 苜蓿 土壤水分 降雨入渗
下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部