Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for...Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.展开更多
Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in...Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in terms of energy density,power density,and safety.Hence,it is very important to develop next-generation separators for advanced lithium(Li)-based recharge-able batteries including LIBs and Li-S batteries.Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high-end separators due to their simple processes,low-cost equipment,controllable microporous structure,wide material applicability,and availability of multiple functions.In this review,the electrospinning technologies for separators are reviewed in terms of devices,process and environment,and polymer solution systems.Furthermore,strategies toward the improvement of electrospun separators in advanced LIBs and Li-S batteries are presented in terms of the compositions and the structure of nanofibers and separators.Finally,the challenges and prospects of electrospun separators in both academia and industry are proposed.We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li-based batteries.展开更多
The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the format...The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries.展开更多
Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices....Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices.In this paper,we introduce a 2.5μm-thick asymmetric and ultrastrong separator,which can induce tissue-like lithium deposits.The asymmetric separator,denoted by utPE@Cu_(2)O,was prepared by selective synthesis of Cu_(2)O nanoparticles on one of the outer surfaces of a nanofibrous(diameter~10 nm)ultrastrong ultrahigh molecular weight polyethylene(UHMWPE)membrane.Microscopic analysis shows that the lithium deposits have tissue-like morphology,resulting in the symmetric lithium cells assembled using utPE@Cu_(2)O with symmetric Cu_(2)O coating exhibiting stable performance for over 2000 h of cycling.This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries,providing a pathway towards enhanced battery performance and safety.展开更多
Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Z...Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.展开更多
Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution a...Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution and structural reconstruction,which are associated with hydrofluoric acid(HF)generation from lithium hexafluorophosphate decomposition.The potential for thermal runaway during the working process poses another challenge.Separators are promising components to alleviate the aforementioned obstacles.Herein,an ultrathin double-layered separator with a 10 lm polyimide(PI)basement and a 2 lm polyvinylidene difluoride(PVDF)coating layer is designed and fabricated by combining a nonsolvent induced phase inversion process and coating method.The PI skeleton provides good stability against potential thermal shrinkage,and the strong PI-PVDF bonding endows the composite separator with robust structural integrity;these characteristics jointly contribute to the extraordinary mechanical tolerance of the separator at elevated temperatures.Additionally,unique HF-scavenging effects are achieved with the formation of-CO…H-F hydrogen bonds for the abundant HF coordination sites provided by the imide ring;hence,the layered Ni-rich cathodes are protected from HF attack,which ultimately reduces transition metal dissolution and facilitates long-term cyclability of the Ni-rich cathodes.Li||NCM811 batteries(where“NCM”indicates LiNi_(x)Co_(y)Mn_(1-x-y)O_(2))with the proposed composite separator exhibit a 90.6%capacity retention after 400 cycles at room temperature and remain sustainable at 60℃with a 91.4%capacity retention after 200 cycles.By adopting a new perspective on separators,this study presents a feasible and promising strategy for suppressing capacity degradation and enabling the safe operation of Ni-rich cathode materials.展开更多
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo...Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.展开更多
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu...Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.展开更多
Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern...Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.展开更多
Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,t...Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.展开更多
Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising nex...Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising next-generation rechargeable energy storage devices.However,the“shuttle effect”of polysulfide results in the passivation of metal lithium anode,the decrease of battery capacity and coulombic efficiency,and the deterioration of cycle stability.To realize the commercialization of Li-S batteries,its serious“shuttle effect”needs to be suppress.The commercial separators are ineffective to suppress this effect because of its large pore size.Therefore,it is an effective strategy to modify the separator surface and introduce functional modified layer.In addition to the blocking strategy,the catalysis of polysulfide conversion reaction is also an important factor hindering the migration of polysulfides.In this review,the principles of separator modification,functionalization,and catalysis in Li-S batteries are reviewed.Furthermore,the research trend of separator functionalization and polysulfide catalysis in the future is prospected.展开更多
Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applic...Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.展开更多
It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swell...It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swelling in liquid electrolyte.Specifically,the paper-based separator is prepared by propionylated sisal fibers through a wet papermaking process.Scanning electron microscope(SEM)and multi-range X-ray nano-computed tomography(CT)images display strong swelling of modified fibers after electrolyte absorption,which can effectively decrease the pore size of separator.Due to the high electrolyte uptake(817 wt%),paper-based separator exhibits ionic conductivity of 2.93 mS cm^(-1).^(7)Li solid-state NMR spectroscopy and Gaussian simulation reveal that the formation of local high Li^(+)ion concentration in the separator and its low absorption energy with Li^(+) ion(62.2 kcal mol^(-1))is conducive to the ionic transportation.In particular,the assembled Li/separator/LiFePO_(4) cell displays wide electrochemical stability window(5.2 V)and excellent cycle performance(capacity retention of 96.6%after 100 cycles at 0.5C)due to the reduced side reactions as well as enhanced electrolyte absorption and retention capacity by propionylation.Our proposed strategy will provide a novel perspective to design high-performance biobased separators to boost the development of clean and sustainable energy economy.展开更多
The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfide...The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfides severely restrict the use of Li-S batteries in practical applications.Herein,a novel bimetallic LaNiO_(3) functional material with high electrical conductivity and catalytic property is prepared to act as a high-efficiency polysulfide shuttling stopper.The three LaNiO_(3) samples with different physical/chemical characteristics are obtained by controlling the calcination temperature.In conjunction with the high electrical conductivity and excellent catalytic properties of the as-prepared materials,the appropriate chemisorption toward polysulfides offers great potential to enhance electrochemical stability for highperformance Li-S batteries.Particularly,the Li-S cell with the separator modified by such functional material gives a specific capacity of 658 mA h g^(-1) after 500 cycles at a high current density of 2 C.Even with high sulfur loading of 6.05 mg cm^(-2),the Li-S battery still exhibits an areal specific capacity of 2.81 m A h cm^(-2)after 150 cycles.This work paves a new avenue for the rational design of materials for separator modification in high-performance Li-S batteries.展开更多
The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned c...The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned carbon nanotubes(SA‐C)on super‐aligned boron nitride@carbon nanotubes(SA‐BC)to create a composite film(SA‐BC/SA‐C).This separator was used to fabricate safe LSBs with improved electrochemical performance.The highly aligned separator structure created a uniform thermal field that could rapidly dissipate heat accumulated during continuous operation due to internal resistance,which prevented the development of extremely high temperatures.The array of boron nitride nanosheets endowed the composite separator with a large number of adsorption sites,while the highly graphitized carbon nanotube skeleton accelerated the catalytic conversion of high‐valence polysulfides into low‐valence polysulfides.The arrayed molecular brush design enabled the regulation of local current density and ion flux,and considerably alleviated the growth of lithium dendrites,thus promoting the smooth deposition of Li metal.Consequently,a battery constructed with the SA‐BC/SA‐C separator showed a good discharge capacity of 685.2 mAh g−1 over 300 cycles(a capacity decay of 0.026%per cycle)at 2 C and 60°C.This“three‐in‐one”multifunctional separator design strategy constitutes a new path forward for overcoming the safety problems of LSBs.展开更多
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
Lithium-ion batteries(LIBs)require separators with high performance and safety to meet the increasing demands for energy storage applications.Coating electrochemically inert ceramic materials on conventional polyolefi...Lithium-ion batteries(LIBs)require separators with high performance and safety to meet the increasing demands for energy storage applications.Coating electrochemically inert ceramic materials on conventional polyolefin separators can enhance stability but comes at the cost of increased weight and decreased capacity of the battery.Herein,a novel separator coated with lithium iron phosphate(LFP),an active cathode material,is developed via a simple and scalable process.The LFP-coated separator exhibits superior thermal stability,mechanical strength,electrolyte wettability,and ionic conductivity than the conventional polyethylene(PE)separator.Moreover,the LFP coating can actively participate in the electrochemical reaction during the charge-discharge process,thus enhancing the capacity of the battery.The results show that the LFP-coated separator can increase the cell capacity by 26%,and improve the rate capability by 29%at 4 C compared with the conventional PE separator.The LFP-coated separator exhibits only 1.1%thermal shrinkage at 140°C,a temperature even above the melting point of PE.This work introduces a new strategy for designing separators with dual functions for the next-generation LIBs with improved performance and safety.展开更多
One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous deca...One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous decay in charged energy,often resulting in fully depleted devices in a matter of hours.Here,a new method for suppressing this self-discharge phenomenon is proposed by using directionally polarized piezoelectric electrospun nanofiber films as separator materials.Tailored engineering of polyvinylidene fluoride(PVDF)nanofiber films containing a small concentration of sodium dodecyl sulfate(SDS)results in a high proportion of polarβphases,reaching 380.5%of the total material.Inducing polarity into the separator material provides a reverse-diode mechanism in the device,such that it drops from an initial voltage of 1.6 down to 1 V after 10 h,as opposed to 0.3 V with a nonpolarized,commercial separator material.Thus,the energy retained for the polarized separator is 37%and 4%for the nonpolarized separator,making supercapacitors a more attractive solution for long-term energy storage.展开更多
Development of practical lithium(Li)metal batteries(LMBs)remains challenging despite promises of Li metal anodes(LMAs),owing to Li dendrite formation and highly reactive surface nature.Polyolefin separators used in LM...Development of practical lithium(Li)metal batteries(LMBs)remains challenging despite promises of Li metal anodes(LMAs),owing to Li dendrite formation and highly reactive surface nature.Polyolefin separators used in LMBs may undergo severe mechanical and chemical deterioration when contacting with LMAs.To identify the best polyolefin separator for LMBs,this study investigated the separator-deterministic cycling stability of LMBs under practical conditions,and redefined the key influencing factors,including pore structure,mechanical stability,and chemical affinity,using 12 different commercial separators,including polyethylene(PE),polypropylene(PP),and coated separators.At extreme compression triggered by LMA swelling,isotropic stress release by balancing the machine direction and transverse direction tensile strengths was found to be crucial for mitigating cell short-circuiting.Instead of PP separators,a PE separator that possesses a high elastic modulus and a highly connected pore structure can uniformly regulate LMA swelling.The ceramic coating reinforced short-circuiting resistance,while the cycling efficiency degraded rapidly owing to the detrimental interactions between ceramics and LMAs.This study identified the design principle of separators for practical LMBs with respect to mechanical stability and chemical affinity toward LMAs by elucidating the impacts of separator modification on the cycling performance.展开更多
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic...In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries.展开更多
基金financially supported by National Natural Science Foundation of China(No.51872090,51772097)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+2 种基金Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)Natural Science Foundation of Hebei Province(No.E2020209151)the financial support from Donghua University(101-08-0241022,23D210105,and 101-07-005759)。
文摘Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.
基金The authors gratefully acknowledge financial support from Dagong Equipment Manufacturing(Tianjin)Co.,Ltd.(53H23019)the Tianjin Research Innovation Project for Postgraduate Students(2022BKYZ037)the National Natural Science Foundation of China(22179093).
文摘Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in terms of energy density,power density,and safety.Hence,it is very important to develop next-generation separators for advanced lithium(Li)-based recharge-able batteries including LIBs and Li-S batteries.Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high-end separators due to their simple processes,low-cost equipment,controllable microporous structure,wide material applicability,and availability of multiple functions.In this review,the electrospinning technologies for separators are reviewed in terms of devices,process and environment,and polymer solution systems.Furthermore,strategies toward the improvement of electrospun separators in advanced LIBs and Li-S batteries are presented in terms of the compositions and the structure of nanofibers and separators.Finally,the challenges and prospects of electrospun separators in both academia and industry are proposed.We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li-based batteries.
基金supported by the National Nature Science Foundation of China [52172247, 21875237]the National Key R&D Program of China [2018YFB0905400]。
文摘The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries.
文摘Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices.In this paper,we introduce a 2.5μm-thick asymmetric and ultrastrong separator,which can induce tissue-like lithium deposits.The asymmetric separator,denoted by utPE@Cu_(2)O,was prepared by selective synthesis of Cu_(2)O nanoparticles on one of the outer surfaces of a nanofibrous(diameter~10 nm)ultrastrong ultrahigh molecular weight polyethylene(UHMWPE)membrane.Microscopic analysis shows that the lithium deposits have tissue-like morphology,resulting in the symmetric lithium cells assembled using utPE@Cu_(2)O with symmetric Cu_(2)O coating exhibiting stable performance for over 2000 h of cycling.This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries,providing a pathway towards enhanced battery performance and safety.
基金supported by grants from the National Key Research and Development Program of China(No.2021YFF0500600)the Haihe Laboratory of Sustainable Chemical Transformations,and the Fundamental Research Funds for the Central Universities.We appreciate Neware Technology Co.,Ltd for their battery test systems in the TJU Nanoyang-Neware Joint Laboratory for Energy Innovation.
文摘Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.
基金supported by the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments.This work was sponsored by the Natural Science Foundation of Chongqing,China(CSTC2021jcyjmsxmX10305,CSTB2022NSCQ-MSX0246,CSTB2022NSCQMSX0242,CSTB2022NSCQ-MSX1244,CSTB2022NSCQ-MSX0441,CSTB2022NSCQ-MSX1356,CSTB2022NSCQ-MSX1572,CSTB2022 NSCQ-MSX1583,CSTB2022NSCQMSX0487,CSTB2022TFII-OFX0034,and CSTB2023TIAD-KPX0010)the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2023TIAD-KPX0010).
文摘Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution and structural reconstruction,which are associated with hydrofluoric acid(HF)generation from lithium hexafluorophosphate decomposition.The potential for thermal runaway during the working process poses another challenge.Separators are promising components to alleviate the aforementioned obstacles.Herein,an ultrathin double-layered separator with a 10 lm polyimide(PI)basement and a 2 lm polyvinylidene difluoride(PVDF)coating layer is designed and fabricated by combining a nonsolvent induced phase inversion process and coating method.The PI skeleton provides good stability against potential thermal shrinkage,and the strong PI-PVDF bonding endows the composite separator with robust structural integrity;these characteristics jointly contribute to the extraordinary mechanical tolerance of the separator at elevated temperatures.Additionally,unique HF-scavenging effects are achieved with the formation of-CO…H-F hydrogen bonds for the abundant HF coordination sites provided by the imide ring;hence,the layered Ni-rich cathodes are protected from HF attack,which ultimately reduces transition metal dissolution and facilitates long-term cyclability of the Ni-rich cathodes.Li||NCM811 batteries(where“NCM”indicates LiNi_(x)Co_(y)Mn_(1-x-y)O_(2))with the proposed composite separator exhibit a 90.6%capacity retention after 400 cycles at room temperature and remain sustainable at 60℃with a 91.4%capacity retention after 200 cycles.By adopting a new perspective on separators,this study presents a feasible and promising strategy for suppressing capacity degradation and enabling the safe operation of Ni-rich cathode materials.
基金financially supported by National Natural Science Foundation of China(No.82204604,22304055)Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)+1 种基金Natural Science Foundation of Hebei Province(No.E2020209151,E2022209158,H2022209012)Science and Technology Project of Hebei Education Department(No.JZX2024026)。
文摘Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.
基金supported by the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe National Natural Science Foundation of China(12002109)
文摘Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.
基金supported by the National Key Research and Development Program of China(No.2022YFA1504100)the National Natural Science Foundation of China(Nos.22005215,22279089,and 22178251).
文摘Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.
基金supported by the Science Foundation of China University of Petroleum,Beijing(No.ZX20230047)Open Research Fund of State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,China Pingmei Shenma Group(No.41040220201308).
文摘Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.
基金support of the National Natural Science Foundation of China(No.21773188,No.22179109)central universities fundamental research fund(XDJK2019AA002)Chongqing Natural Science fund(cstc2020jcyj-bshx0047,cstc2021jcyj-bsh0173).
文摘Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising next-generation rechargeable energy storage devices.However,the“shuttle effect”of polysulfide results in the passivation of metal lithium anode,the decrease of battery capacity and coulombic efficiency,and the deterioration of cycle stability.To realize the commercialization of Li-S batteries,its serious“shuttle effect”needs to be suppress.The commercial separators are ineffective to suppress this effect because of its large pore size.Therefore,it is an effective strategy to modify the separator surface and introduce functional modified layer.In addition to the blocking strategy,the catalysis of polysulfide conversion reaction is also an important factor hindering the migration of polysulfides.In this review,the principles of separator modification,functionalization,and catalysis in Li-S batteries are reviewed.Furthermore,the research trend of separator functionalization and polysulfide catalysis in the future is prospected.
基金the financial support from the National Natural Science Foundation of China (22108044)the 111 Project (B20088)+3 种基金the Fundamental Research Funds for the Central Universities (2572022DJ02)the Research and Development Program in Key Fields of Guangdong Province (2020B1111380002)the Basic Research and Applicable Basic Research in Guangzhou City (202201010290)the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (2021GDKLPRB07)。
文摘Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.
基金supported by the Natural Science Foundation of Guangxi Province(2018GXNSFBA138027)the Scientific Research Foundation of Guangxi University(XGZ170232)the National Enterprise Technology Center of Guangxi Bossco Environmental Protection Technology Co.,Ltd(202100033)。
文摘It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swelling in liquid electrolyte.Specifically,the paper-based separator is prepared by propionylated sisal fibers through a wet papermaking process.Scanning electron microscope(SEM)and multi-range X-ray nano-computed tomography(CT)images display strong swelling of modified fibers after electrolyte absorption,which can effectively decrease the pore size of separator.Due to the high electrolyte uptake(817 wt%),paper-based separator exhibits ionic conductivity of 2.93 mS cm^(-1).^(7)Li solid-state NMR spectroscopy and Gaussian simulation reveal that the formation of local high Li^(+)ion concentration in the separator and its low absorption energy with Li^(+) ion(62.2 kcal mol^(-1))is conducive to the ionic transportation.In particular,the assembled Li/separator/LiFePO_(4) cell displays wide electrochemical stability window(5.2 V)and excellent cycle performance(capacity retention of 96.6%after 100 cycles at 0.5C)due to the reduced side reactions as well as enhanced electrolyte absorption and retention capacity by propionylation.Our proposed strategy will provide a novel perspective to design high-performance biobased separators to boost the development of clean and sustainable energy economy.
基金supported by the National Natural Science Foundation of China(51972184,22005169)the Key Basic Research Project of Shandong Province(ZR2019ZD49)+2 种基金the Natural Science Foundation of Shandong Province(ZR2020QB121)the Taishan Scholars Project of Shandong Provincethe Taishan Scholar Young Talent Program(tsqn201909114)。
文摘The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfides severely restrict the use of Li-S batteries in practical applications.Herein,a novel bimetallic LaNiO_(3) functional material with high electrical conductivity and catalytic property is prepared to act as a high-efficiency polysulfide shuttling stopper.The three LaNiO_(3) samples with different physical/chemical characteristics are obtained by controlling the calcination temperature.In conjunction with the high electrical conductivity and excellent catalytic properties of the as-prepared materials,the appropriate chemisorption toward polysulfides offers great potential to enhance electrochemical stability for highperformance Li-S batteries.Particularly,the Li-S cell with the separator modified by such functional material gives a specific capacity of 658 mA h g^(-1) after 500 cycles at a high current density of 2 C.Even with high sulfur loading of 6.05 mg cm^(-2),the Li-S battery still exhibits an areal specific capacity of 2.81 m A h cm^(-2)after 150 cycles.This work paves a new avenue for the rational design of materials for separator modification in high-performance Li-S batteries.
基金National Key R&D Program of China,Grant/Award Number:2022YFE0206500。
文摘The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned carbon nanotubes(SA‐C)on super‐aligned boron nitride@carbon nanotubes(SA‐BC)to create a composite film(SA‐BC/SA‐C).This separator was used to fabricate safe LSBs with improved electrochemical performance.The highly aligned separator structure created a uniform thermal field that could rapidly dissipate heat accumulated during continuous operation due to internal resistance,which prevented the development of extremely high temperatures.The array of boron nitride nanosheets endowed the composite separator with a large number of adsorption sites,while the highly graphitized carbon nanotube skeleton accelerated the catalytic conversion of high‐valence polysulfides into low‐valence polysulfides.The arrayed molecular brush design enabled the regulation of local current density and ion flux,and considerably alleviated the growth of lithium dendrites,thus promoting the smooth deposition of Li metal.Consequently,a battery constructed with the SA‐BC/SA‐C separator showed a good discharge capacity of 685.2 mAh g−1 over 300 cycles(a capacity decay of 0.026%per cycle)at 2 C and 60°C.This“three‐in‐one”multifunctional separator design strategy constitutes a new path forward for overcoming the safety problems of LSBs.
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
基金supported by the Natural Science foundation of China(51972043)the Sichuan-Hong Kong Collaborative Research Fund(2021YFH0184)the Natural Science foundation of Sichuan Province(2023NSFSC0417)。
文摘Lithium-ion batteries(LIBs)require separators with high performance and safety to meet the increasing demands for energy storage applications.Coating electrochemically inert ceramic materials on conventional polyolefin separators can enhance stability but comes at the cost of increased weight and decreased capacity of the battery.Herein,a novel separator coated with lithium iron phosphate(LFP),an active cathode material,is developed via a simple and scalable process.The LFP-coated separator exhibits superior thermal stability,mechanical strength,electrolyte wettability,and ionic conductivity than the conventional polyethylene(PE)separator.Moreover,the LFP coating can actively participate in the electrochemical reaction during the charge-discharge process,thus enhancing the capacity of the battery.The results show that the LFP-coated separator can increase the cell capacity by 26%,and improve the rate capability by 29%at 4 C compared with the conventional PE separator.The LFP-coated separator exhibits only 1.1%thermal shrinkage at 140°C,a temperature even above the melting point of PE.This work introduces a new strategy for designing separators with dual functions for the next-generation LIBs with improved performance and safety.
基金the UK Engineering and Physical Sciences Research Council(EPSRC)for funding this work under the Doctoral Training Partnership(DTP)award(EP/N509772/1).
文摘One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous decay in charged energy,often resulting in fully depleted devices in a matter of hours.Here,a new method for suppressing this self-discharge phenomenon is proposed by using directionally polarized piezoelectric electrospun nanofiber films as separator materials.Tailored engineering of polyvinylidene fluoride(PVDF)nanofiber films containing a small concentration of sodium dodecyl sulfate(SDS)results in a high proportion of polarβphases,reaching 380.5%of the total material.Inducing polarity into the separator material provides a reverse-diode mechanism in the device,such that it drops from an initial voltage of 1.6 down to 1 V after 10 h,as opposed to 0.3 V with a nonpolarized,commercial separator material.Thus,the energy retained for the polarized separator is 37%and 4%for the nonpolarized separator,making supercapacitors a more attractive solution for long-term energy storage.
基金supported by the National Research Foundation of Korea(NRF),Government of Korea(MSIT)(2020R1A4A4079810 and 2020R1C1C1009159).
文摘Development of practical lithium(Li)metal batteries(LMBs)remains challenging despite promises of Li metal anodes(LMAs),owing to Li dendrite formation and highly reactive surface nature.Polyolefin separators used in LMBs may undergo severe mechanical and chemical deterioration when contacting with LMAs.To identify the best polyolefin separator for LMBs,this study investigated the separator-deterministic cycling stability of LMBs under practical conditions,and redefined the key influencing factors,including pore structure,mechanical stability,and chemical affinity,using 12 different commercial separators,including polyethylene(PE),polypropylene(PP),and coated separators.At extreme compression triggered by LMA swelling,isotropic stress release by balancing the machine direction and transverse direction tensile strengths was found to be crucial for mitigating cell short-circuiting.Instead of PP separators,a PE separator that possesses a high elastic modulus and a highly connected pore structure can uniformly regulate LMA swelling.The ceramic coating reinforced short-circuiting resistance,while the cycling efficiency degraded rapidly owing to the detrimental interactions between ceramics and LMAs.This study identified the design principle of separators for practical LMBs with respect to mechanical stability and chemical affinity toward LMAs by elucidating the impacts of separator modification on the cycling performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072105,21676067)the Key R&D Program of Anhui Province(202104a05020044)+2 种基金the Anhui Provincial Natural Science Foundation(2108085J23)Science and Technology Major Project of Anhui Province(202003a05020014)the Fundamental Research Funds for the Central Universities(PA2021KCPY0028,JZ2020YYPY0109).
文摘In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries.