期刊文献+
共找到82,556篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of dry-wet cycles on the mechanical properties of sandstone with unloading-induced damage
1
作者 NAN Gan ZHANG Jiaming +2 位作者 LUO Yi WANG Xinlong HU Zhongyi 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3474-3486,共13页
Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as eng... Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as engineering excavations.Furthermore,this degradation is further exacerbated under periodic dry-wet environmental conditions.This study investigated the effects of dry-wet cycles and unloading on the mechanical properties of jointed fine sandstone using uniaxial and triaxial compression tests.These tests were performed on rock samples subjected to varying unloading degrees and different numbers of dry-wet cycles.The results demonstrate that with an increase in the unloading degree from 0%to 70%,there is a corresponding decrease in peak stress ranging from 10%to 33%.Additionally,the cohesion exhibits a reduction of approximately 20%to 25%,while the internal friction angle experiences a decline of about 3.5%to 6%.These findings emphasize a significant unloading effect.Moreover,the degree of peak stress degradation in unloading jointed fine sandstone diminishes with an increase in confining pressure,suggesting that confining pressure mitigates the deterioration caused by dry-wet cycles.Additionally,as the number of dry-wet cycles increases,there is a notable decline in the mechanical properties of the sandstone,evidencing significant dry-wet degradation.Utilizing the Drucker Prager criterion,this study establishes a strength criterion and fracture criterion,denoted as σ_(1)(m,n) and K_(T)^(Ⅱ)(m, n), to quantify the combined impacts of dry-wet cycles and unloading on jointed fine sandstone,which provides a comprehensive understanding of its mechanical behavior under such conditions. 展开更多
关键词 UNLOADING dry-wet cycle Jointed fine sandstone Strength criterion fracture criterion Mechanical properties
下载PDF
Effect of dry-wet cycles on dynamic properties and microstructures of sandstone:Experiments and modelling
2
作者 Hai Pu Qingyu Yi +3 位作者 Andrey P.Jivkov Zhengfu Bian Weiqiang Chen Jiangyu Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期655-679,共25页
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi... Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields. 展开更多
关键词 Underground pumped storage power plant dry-wet cycles Split Hopkinson pressure bar Macro and micro properties FEM-DEM coupling model Damage characterization
下载PDF
Exploring the mechanical behavior and microstructure of compacted loess subjected to dry-wet cycles and chemical contamination
3
作者 Yongpeng Nie Wankui Ni +1 位作者 Xiangfei Lü Wenxin Tuo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3673-3695,共23页
Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding m... Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding microstructural evolution of contaminated loess subjected to dry-wet cycles is essential to elucidate the soil degradation mechanism.Therefore,direct shear and consolidation tests were performed to investigate the variations in mechanical properties of compacted loess contaminated with acetic acid,sodium hydroxide,and sodium sulfate during dry-wet cycles.The mechanical response mechanisms were investigated using zeta potential,mineral chemical composition,and scanning electron microscopy(SEM)tests.The results indicate that the mechanical deterioration of sodium hydroxidecontaminated loess during dry-wet cycles decreases with increasing contaminant concentration,which is mainly attributed to the thickening of the electrical double layer(EDL)by Nat and the precipitation of calcite,as well as the formation of colloidal flocs induced by OH,thus inhibiting the development of large pores during the dry-wet process.In contrast,the attenuation of mechanical properties of both acetic acid-and sodium sulfate-contaminated loess becomes more severe with increasing contaminant concentration,with the latter being more particularly significant.This is primarily due to the reduction of the EDL thickness and the erosion of cement in the acidic environment,which facilitates the connectivity of pores during dry-wet cycles.Furthermore,the salt expansion generated by the drying process of saline loess further intensifies the structural disturbance.Consequently,the mechanical performance of compacted loess is sensitive to both pollutant type and concentration,exhibiting different response patterns in the dry-wet cycling condition. 展开更多
关键词 Contaminated loess dry-wet cycles COMPRESSIBILITY Shear strength Microstructural evolution
下载PDF
Increasing Threat of Scarcity Prompts Rise in Water Recycling
4
作者 Chris Palmer 《Engineering》 SCIE EI CAS CSCD 2024年第2期6-8,共3页
In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower ... In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower is the largest structure in the world with an onsite water recycling system.Built by the Australian com-pany Aquacell(Milton,NSW,Australia),the system cleans 113 m^(3)of sewage,sink,shower,and other wastewater each day for use in irrigation and flushing toilets,saving an estimated 35000 m?of water anmually[1].The building is just one of dozens in San Fran-cisco outitted with their own water recycling systems,thanks to a city mandate enacted in 2015[1]. 展开更多
关键词 cycling WASTEWATER recycling
下载PDF
Single-cell transcriptomics reveals cell atlas and identifies cycling tumor cells responsible for recurrence in ameloblastoma
5
作者 Gan Xiong Nan Xie +17 位作者 Min Nie Rongsong Ling Bokai Yun Jiaxiang Xie Linlin Ren Yaqi Huang Wenjin Wang Chen Yi Ming Zhang Xiuyun Xu Caihua Zhang Bin Zou Leitao Zhang Xiqiang Liu Hongzhang Huang Demeng Chen Wei Cao Cheng Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第2期251-264,共14页
Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly un... Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma. 展开更多
关键词 inhibited cycling eliminated
下载PDF
TuBG1 promotes hepatocellular carcinoma via ATR/P53-apoptosis and cycling pathways
6
作者 Yan Zhang Zhen-Zhen Wang +4 位作者 An-Qi Han Ming-Ya Yang Li-Xin Zhu Fa-Ming Pan Yong Wang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第2期195-209,共15页
Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate... Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC. 展开更多
关键词 TuBG1 Hepatocellular carcinoma APOPTOSIS Cell cycling IMMUNOMODULATORS
下载PDF
Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer
7
作者 Leqi Zhao Yijun Zhong +2 位作者 Chencheng Cao Tony Tang Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期59-73,共15页
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder... The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern. 展开更多
关键词 Solid-state battery Cathode electrolyte interlayer Flame-retardant additive cycling stability Interfacial stability
下载PDF
Cycling performance of layered oxide cathode materials for sodium-ion batteries
8
作者 Jinpin Wu Junhang Tian +1 位作者 Xueyi Sun Weidong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1720-1744,共25页
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat... Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials. 展开更多
关键词 sodium-ion battery layered oxide materials cycling performance bulking doping surface coating concentration gradient mixed structure high-entropy
下载PDF
Changes in calcium accumulation and utilization efficiency and their impact on recycling,immobilization,and export across the oil palm cycle
9
作者 Ismael de Jesus Matos Viégas Luma Castro de Souza +4 位作者 Eric Victor de Oliveira Ferreira Milton Garcia Costa Glauco André dos Santos Nogueira Vitor Resende do Nascimento Candido Ferreira de Oliveira Neto 《Oil Crop Science》 CSCD 2024年第3期143-150,共8页
Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,a... Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages. 展开更多
关键词 Elaeis guineensis Jacq Ca cycling Ca export Ca immobilization Ca use efficiency Plant nutrition AMAZON
下载PDF
Recycling Carbon:A Leap towards Greener Chemicals
10
作者 YAN Fusheng 《Bulletin of the Chinese Academy of Sciences》 2024年第1期22-24,共3页
Imagine a world where carbon dioxide(CO_(2))emissions that contribute to global warming are not only captured but transformed into something valuable.Scientists have now engineered a new method that could make this vi... Imagine a world where carbon dioxide(CO_(2))emissions that contribute to global warming are not only captured but transformed into something valuable.Scientists have now engineered a new method that could make this vision a reality,offering a new twist on carbon fixation. 展开更多
关键词 cycling offering SOMETHING
下载PDF
Swiss cycling brand to pushing the boundaries of sustainability
11
《China Textile》 2024年第3期47-47,共1页
Possenia,a trailblazing newcomer in the cycling industry,proudly announces a groundbreaking achievement:it is Switzerland’s first cycling brand to introduce the bluesign®PRODUCT label,marking an important milest... Possenia,a trailblazing newcomer in the cycling industry,proudly announces a groundbreaking achievement:it is Switzerland’s first cycling brand to introduce the bluesign®PRODUCT label,marking an important milestone in sustainable cycling apparel in Europe.These environmentally conscious,premium cycling essentials are now available on Digitec Galaxus as well as directly through Possenia’s own website. 展开更多
关键词 cycling TRAIL BREAKING
下载PDF
Recycling a Scarce Resource
12
作者 GITONGA NJERU 《ChinAfrica》 2024年第11期42-43,共2页
Caleb Munyao,a 48-year-old middle-scale farmer from Kenya’s eastern region,understands the importance of water better than most.On his 13-hectare farm,where he grows maize,yellow beans,and mangoes,every drop of water... Caleb Munyao,a 48-year-old middle-scale farmer from Kenya’s eastern region,understands the importance of water better than most.On his 13-hectare farm,where he grows maize,yellow beans,and mangoes,every drop of water is precious.Kenya,like many countries in Africa,faces significant challenges in managing its water resources.The country’s water scarcity issues are exacerbated by climate change,rapid urbanisation,and inconsistent rainfall patterns. 展开更多
关键词 cycling YELLOW inconsistent
下载PDF
Recycling agricultural plastic mulch:limitations and opportunities in the United States
13
作者 Kwabena A.Sarpong Funmilayo A.Adesina +4 位作者 Lisa W.DeVetter Kun Zhang Kevin DeWhitt Karl R.Englund Carol Miles 《Circular Agricultural Systems》 2024年第1期31-41,共11页
Plastic mulches have become an essential component of modern agriculture since their introduction in the 1950s.However,disposal of plastic mulches poses serious environmental challenges as plastics that are not consid... Plastic mulches have become an essential component of modern agriculture since their introduction in the 1950s.However,disposal of plastic mulches poses serious environmental challenges as plastics that are not considered biodegradable or compostable can take several hundred years to degrade.Each year in the United States,only 9%of overall plastic waste is recycled while 79%is accumulated in landfills or the natural environment.Recycling of plastic mulch is especially constrained due to the contamination that results from their use in farming.Currently,recovered mulches are reported to have 30%–80%surface contamination,primarily from soil and plant debris.Plastic mulch waste is concentrated in areas where they are used and can provide logistical opportunities to the plastic recycling industries.Plastic recycling includes mechanical,advanced(chemical and thermal),and biological methods,that may all be used for polyethylene(PE).Most plastic is recycled using the mechanical method,while advanced and biological methods are promising but face significant financial and technical challenges.For all recycling methods,strategies are needed for managing surface contamination to realize the recycling potential of plastic mulch. 展开更多
关键词 cycling DEBRIS primarily
下载PDF
The law of strength damage and deterioration of jointed sandstone after dry-wet cycles 被引量:1
14
作者 WANG Gui-lin ZHANG Tian-yu ZHANG Liang 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1170-1182,共13页
Under the periodic rise and fall of the water level in the Three Gorges Reservoir in China,the rock mass in the ebb and flow zone of the slope is always in a state of a dry-wet cycle.In order to explore the influence ... Under the periodic rise and fall of the water level in the Three Gorges Reservoir in China,the rock mass in the ebb and flow zone of the slope is always in a state of a dry-wet cycle.In order to explore the influence of dry-wet cycle on mechanical properties of jointed sandstone,the triaxial and uniaxial compression tests of dry-wet cycle of jointed sandstone were carried out.For the experiment,four groups of samples with different numbers of joints were set up,and the jointed rock samples were subjected to 20 dry-wet cycles.Using both the triaxial compression test and the Mohr-Coulomb(M-C)rock fracture criterion,the strength envelope of the sandstone samples was fitted,and their strength degradation was further analyzed and studied.The results show that:(1)The peak intensity and elastic modulus of the sandstone samples decrease with increased number of dry-wet cycles.(2)The total deterioration of mechanical properties of intact rock samples is bigger than that of jointed sandstone samples as the number of dry-wet cycles increases.(3)With the increase of confining pressure,the peak intensity of intact sandstone samples increases much more than that of jointed sandstone samples,which indicates that joints and their numbers have obvious influence.(4)Joints and their numbers play an important role in guiding the damage effects of sandstone samples,which weaken the damage caused by dry-wet cycles.Therefore,the envelope of the M-C strength criterion of intact sandstone samples moves more than that of jointed sandstone samples. 展开更多
关键词 Jointed sandstone dry-wet cycle Triaxial compression Strength damage Deterioration mechanism
下载PDF
Stability analysis of gravity anchor foundation of layered argillaceous sandstone under dry-wet cycles 被引量:1
15
作者 ZHENG Jing-cheng CHEN Wei +4 位作者 ZHENG Ke-ren GU Yu-peng WANG Fei HUANG Zhen LI Yun 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1118-1130,共13页
To investigate the stability of gravity anchors of suspension bridges,in-situ tests of the vertical bearing capacity of the bedrock,shear resistance of the anchor-rock interface,shear resistance of the bedrock were co... To investigate the stability of gravity anchors of suspension bridges,in-situ tests of the vertical bearing capacity of the bedrock,shear resistance of the anchor-rock interface,shear resistance of the bedrock were conducted in a suspension bridge project.Under dry-wet cycles,the deterioration law of the mechanical properties of argillaceous sandstone was identified in laboratory tests:the elastic modulus,cohesion and friction of the argillaceous sandstone deteriorated significantly at first few dry-wet cycles and then declined slowly after 10 cycles,ultimately these three mechanical parameters were reduced to about 1/3,1/3,2/3 of the initial value respectively.Moreover,numerical simulation was used to restore in-situ shear tests and a good agreement was obtained.Base on the results of in-situ and laboratory tests,the stability of the gravity anchor foundation under natural conditions and drywet cycles was calculated and its failure modes were analyzed.The results demonstrated that the dry-wet cycles caused uneven settlement of the anchor foundation,resulting in more serious stress concentration in the substrate.The dry-wet cycles remarkably reduced the stability coefficient of the anchor foundation,whose failure mode shifted from overturning failure under natural conditions to sliding failure.When there was weak interlayer in the rock layer,the anti-sliding stability of the anchor foundation was affected drastically. 展开更多
关键词 Gravity anchor foundation STABILITY In-situ tests dry-wet cycles Numerical simulation
下载PDF
Effect of Dry-Wet Cycles on the Transport and Mechanical Properties of Cement Mortar Subjected to Sulfate Attack 被引量:1
16
作者 Wei Chen Weijie Shan +1 位作者 Yue Liang Frederic Skoczylas 《Fluid Dynamics & Materials Processing》 EI 2023年第3期679-696,共18页
This study deals with the analysis of the detrimental effects of a“sulfate attack”on cement mortar for different dry-wet cycles.The mass loss,tensile strength,and gas permeability coefficient were determined and ana... This study deals with the analysis of the detrimental effects of a“sulfate attack”on cement mortar for different dry-wet cycles.The mass loss,tensile strength,and gas permeability coefficient were determined and analyzed under different exposure conditions.At the same time,nitrogen adsorption(NAD),scanning electron microscopy(SEM),and X-ray diffraction(XRD)techniques were used to analyze the corresponding variations in the microstructure and the corrosion products.The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to the mortars in aqueous solution.The pores fill with corrosion products,increasing the mortar specimen mass and tensile strength while reducing the permeability coefficient and pore size distribution.As corrosion proceeds,the crystallization pressure of the corrosion products increases,resulting in a 16%reduction in tensile strength from the initial value and a 2.6-factor increase in the permeability coefficient,indicating sensitivity to sulfate attack damage.Furthermore,the main corrosion products generated in the experiment are gypsum and ettringite.Application of osmotic pressure and extension of the immersion time can accelerate the erosion process. 展开更多
关键词 Cement mortar dry-wet cycles gas permeability tensile strength MICROSTRUCTURE
下载PDF
Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines 被引量:4
17
作者 Fenghai Guo Tiebang Zhang +1 位作者 Limin Shi Lin Song 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1180-1192,共13页
Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding c... Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding cycling kinetics and thermodynamic stability of the experimental alloys have been investigated in detail.The results show that the Mg-Ni-La alloys exhibit improved hydrogen storage cycling properties and can remain storage hydrogen above 5.5 wt%after 200 cycles.With the increase of cycling numbers,the dehydrogenation rates of the experimental samples increase firstly and then gradually decrease,and eventually maintain relative stable state.Microstructure observation reveals that powders sintering and hydrogen decrepitation both exist during hydrogen absorption/desorption cycles due to repeated volume expansion and contraction.Meanwhile,the in-situ formed LaH_(x)(x=2,3)and Mg_(2)Ni nanocrystallines stabilize the microstructures of the particles and hinder the powders sintering.After 200 cycles,the average particle size of the experimental samples decreases and the specific surface area apparently increases,which leads to the decomposition temperatures of MgH_(2)and Mg_(2)NiH_(4)slightly shift to lower temperatures.Moreover,Mg_(2)Ni and LaH_(x)(x=2,3)have been proven to be stable catalysts during long-term cycling,which can still uniformly distribute within the powders after 200 cycles. 展开更多
关键词 Mg-based hydrogen storage alloys cycle stability Microstructure evolution Catalyst stability THERMODYNAMICS
下载PDF
Interconnected and high cycling stability polypyrrole supercapacitors using cellulose nanocrystals and commonly used inorganic salts as dopants 被引量:1
18
作者 Zuxin Sun Wim Thielemans 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期165-174,I0005,共11页
Polypyrrole(PPy)is wildly used as electrode material in supercapacitors due to its high conductivity,low cost,ease of handling,and ease of fabrication.However,limited capacitance and poor cycling stability hinder its ... Polypyrrole(PPy)is wildly used as electrode material in supercapacitors due to its high conductivity,low cost,ease of handling,and ease of fabrication.However,limited capacitance and poor cycling stability hinder its practical application.After developing carboxylated cellulose nanocrystals(CNC-COO^(-))as immobile dopants for PPy to improve its cycling stability,we investigated the effect of different commonly used salts(KCl,NaCl,KBr,and NaClO_(4))as dopants during electrode fabrication by electropolymerization.The film’s capacitance increased from 160.6 to 183.4 F g^(-1)after adding a combination of KCl and NaClO_(4) into the electrodeposition electrolyte.More importantly,the porous and interconnected PPy/CNC-COO^(-)-Cl-(Cl O_(4)^(-))_0.5 electrode film exhibited an excellent capacitance of 125.0 F g^(-1)(0.78 F cm^(-2))at a high current density of 2.0 Ag^(-1)(20 m A cm^(-2),allowing charging in less than 1 min),increasing almost 204%over PPy/CNC-COO-films.A symmetric PPy/CNC-COO^(-)-Cl-(ClO_(4)^(-))_0.5 supercapacitor retained its full capacitance after 5000 cycles,and displayed a high energy density of 5.2 Wh kg^(-1)at a power density of 25.4 W kg^(-1)(34.5μWh cm^(-2) at 1752.3μW cm^(-2)).These results reveal that the porous structure formed by doping with CNC-COO-and inorganic salts opens up more active reaction areas to store charges in PPy-based films as the stiff and ribbon-like CNC-COO-as permanent dopants improve the strength and stability of PPy-based films.Our demonstration provides a simple and practical way to deposit PPy based supercapacitors with high capacitance,fast charging,and excellent cycling stability. 展开更多
关键词 POLYPYRROLE Cellulose nanocrystals cycling stability Inorganic salts SUPERCAPACITOR
下载PDF
Effect of Thermal-cold Cycling Treatment on Mechanical Properties and Microstructure of 6061 Aluminum Alloy 被引量:1
19
作者 王会敏 LI Yanguang +2 位作者 GUO Chaobo CUI Guoming HUANG Shiquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期677-681,共5页
The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmis... The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmission electron microscopy(TEM). The cryogenic treatment mechanism of the alloys was discussed. The results show that thermal-cold cycling treatment is beneficial since it produces a large number of dislocations and accelerates the ageing process of the alloy and yields the finer dispersed β" precipitates in the matrix. This variation of microstructural changes leads to more favorable mechanical properties than the other investigated states, while grain boundary precipitation is coarse and distributed discontinuously along grain boundaries, with a lower precipitation free zone(PEZ) on the both sides of precipitated phase. As a result, the tensile strength, elongation and conductivity of 6061 aluminum alloy after thermal-cold cycling treatment are 373.37 MPa, 17.2% and 28.2 MS/m, respectively. Compared with conventional T6 temper, the mechanical properties are improved significantly. 展开更多
关键词 thermal-cold cycling treatment MICROSTRUCTURES tensile properties aluminum alloys
下载PDF
Prelithiation Enhances Cycling Life of Lithium-Ion Batteries:A Mini Review 被引量:1
20
作者 Xiaomei Liu Ze Wu +5 位作者 Leqiong Xie Li Sheng Jianhong Liu Li Wang Kai Wu Xiangming He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期1-9,共9页
During the last decade,the rapid development of lithium-ion battery(LIB)energy storage systems has provided significant support for the efficient operation of renewable energy stations.In the coming years,the service ... During the last decade,the rapid development of lithium-ion battery(LIB)energy storage systems has provided significant support for the efficient operation of renewable energy stations.In the coming years,the service life demand of energy storage systems will be further increased to 30 years from the current 20 years on the basis of the equivalent service life of renewable energy stations.However,the life of the present LIB is far from meeting such high demand.Therefore,research on the next-generation LIB with ultra-long service life is imminent.Prelithiation technology has been widely studied as an important means to compensate for the initial coulombic efficiency loss and improve the service life of LIBs.This review systematically summarized the different prelithiation methods from anode and cathode electrodes.Moreover,the large-scale industrialization challenge and the possibility of the existing prelithiation technology are analyzed,based on three key parameters:industry compatibility,prelithiation efficiency,and energy density.Finally,the future trends of improvement in LIB performance by other overlithiated cathode materials are presented,which gives a reference for subsequent research. 展开更多
关键词 cycle life lithium compensation lithium-ion battery prelithiation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部