期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An efficient and reusable bimetallic Ni_3Fe NPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid toγ-valerolactone 被引量:6
1
作者 Haojie Wang Chun Chen +2 位作者 Haimin Zhang Guozhong Wang Huijun Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1599-1607,共9页
Bimetallic nanostructures have attracted great interest as efficient catalyst to enhance activity,selectivity and stability in catalytical conversion.Herein,we report a facile one‐pot carbothermal route to in‐situ c... Bimetallic nanostructures have attracted great interest as efficient catalyst to enhance activity,selectivity and stability in catalytical conversion.Herein,we report a facile one‐pot carbothermal route to in‐situ controllable synthesize heterogeneous bimetallic Ni3Fe NPs@C nanocatalyst.The X‐ray diffraction,transmission electron microscopy,X‐ray photoelectron spectroscopy and N2 adsorption‐description results reveal that the Ni3Fe alloy nanoparticles are evenly embedded in carbon matrix.The as‐prepared Ni3Fe NPs@C catalyst shows excellent selective hydrogenation catalytic performance toward the conversion of levulinic acid(LA)toγ‐valerolactone(GVL)via both direct hydrogenation(DH)and transfer hydrogenation(TH).In DH of LA,the bimetallic catalyst achieved a 93.8%LA conversion efficiency with a 95.5%GVL selectivity and 38.2 mmol g–1 h–1 GVL productivity(under 130°C,2MPa H2 within 2 h),which are 6 and 40 times in comparison with monometallic Ni NPs@C and Fe NPs@C catalysts,respectively.In addition,the identical catalyst displayed a full conversion of LA with almost 100%GVL selectivity and 167.1 mmol g–1 h–1 GVL productivity at 180°C within 0.5 h in TH of LA.Under optimal reaction conditions,the DH and TH catalytic performance of 500‐Ni3Fe NPs@C(3:1)catalyst for converting LA to GVL is comparable to the state‐of‐the‐art noble‐based catalysts.The demonstrated capability of bimetallic catalyst design approach to introduce dual‐catalytic functionality for DH and TH reactions could be adoptable for other catalysis processes. 展开更多
关键词 Levulinic acid γ‐valerolactone Bimetallic catalyst HYDROGENATION dualcatalytic functionality
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部