为了克服当前的红外与可见光图像融合算法存在着目标不够突出、纹理细节丢失等现象,本文提出了一种基于高斯模糊逻辑和自适应双通道脉冲发放皮层模型(AdaptiveDual-ChannelSpiking CorticalModel,ADCSCM)的红外与可见光图像融合算法。首...为了克服当前的红外与可见光图像融合算法存在着目标不够突出、纹理细节丢失等现象,本文提出了一种基于高斯模糊逻辑和自适应双通道脉冲发放皮层模型(AdaptiveDual-ChannelSpiking CorticalModel,ADCSCM)的红外与可见光图像融合算法。首先,使用非下采样剪切波变换(NonSubsampled Sheartlet Transform, NSST)将源图像分解为低频和高频部分。其次,结合新拉普拉斯能量和(New Sum of Laplacian, NSL)与高斯模糊逻辑,设定双阈值来指导低频部分进行融合;同时,采用基于ADCSCM的融合规则来指导高频部分进行融合。最后,使用NSST逆变换进行重构来获取融合图像。实验结果表明,本文算法主观视觉效果最佳,并在互信息、信息熵和标准差3项指标上高于其他7种融合算法,能够有效突出红外目标、保留较多纹理细节,提高融合图像的质量。展开更多
文摘为了克服当前的红外与可见光图像融合算法存在着目标不够突出、纹理细节丢失等现象,本文提出了一种基于高斯模糊逻辑和自适应双通道脉冲发放皮层模型(AdaptiveDual-ChannelSpiking CorticalModel,ADCSCM)的红外与可见光图像融合算法。首先,使用非下采样剪切波变换(NonSubsampled Sheartlet Transform, NSST)将源图像分解为低频和高频部分。其次,结合新拉普拉斯能量和(New Sum of Laplacian, NSL)与高斯模糊逻辑,设定双阈值来指导低频部分进行融合;同时,采用基于ADCSCM的融合规则来指导高频部分进行融合。最后,使用NSST逆变换进行重构来获取融合图像。实验结果表明,本文算法主观视觉效果最佳,并在互信息、信息熵和标准差3项指标上高于其他7种融合算法,能够有效突出红外目标、保留较多纹理细节,提高融合图像的质量。