In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existi...In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existing tracked vehicle, a DCT structure was proposed. Matlab/Simulink was a dopted as a platform to develop the simulation model. The engine speed was controlled to follow the target speed as a launch strategy. Two control methods, a proportional integral derivative ( PID ) control method and a fuzzy control method, were proposed to control the engine throttle and oil pressure in order to track the target engine speed. Simulation results show that either the PID control or fuzzy control method can improve the starting performance compared with no loop control meth od. Fuzzy control method can lead a better starting quality compared with PID control method.展开更多
Wet dual clutch transmissions(W-DCTs) show overall benefits including excellent fuel efficiency,wide torque capacity range,long durability,driving comfort and sportiness.Many breakthroughs have been made to further im...Wet dual clutch transmissions(W-DCTs) show overall benefits including excellent fuel efficiency,wide torque capacity range,long durability,driving comfort and sportiness.Many breakthroughs have been made to further improve the fuel efficiency by design innovations and introductions of new hardware.Each W-DCT has its unique design and hardware.It demands the lubricant to provide excellent wet clutch friction performance and anti-shudder friction durability,good synchronizer friction performance and durability,high load-carrying ability,excellent bearing performance,strong anti-corrosion performance,high thermal and oxidative stability,excellent material compatibility,etc.Particularly,the requirement of the wet clutch friction performance in W-DCT is much more severe than conventional ATFs and CVTFs.We report here our latest W-DCTF technologies developed for different W-DCT applications.DCTF-1 was optimized for a two-sump W-DCT application with the clutch lining material of friction material A(FM-A).DCTF-1 shows high and stable dynamic friction,static friction,particularly,high quasi-static friction without any shudder tendency in GK tests.DCTF-2 was designed for a one-sump W-DCT application with the same clutch lining material of FM-A.DCTF-2 completes 42,000 cycles of the severe GTI chassis dynamometer vehicle test without any issues,which is comparable to the factory fill fluid DCTF-FF.DCTF-3 was developed for a one-sump W-DCT application with a different clutch lining material of FM-B.DCTF-3 shows high and stable dynamic friction in the severe newly developed SAE DCT test procedure.DCTF-3 also gives excellent LVFA durability of over 720 h in the JASO M349 test procedure on FM-B.展开更多
A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were li...A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were linked as the nodes according to the interface mode of MDCS.A DCT simulation model was established based on Matlab/Simdriveline,whose running process was accurately controlled by the designed control system.The playback system of vehicle state(VPS) was proposed whose input was the road-test data,with a real vehicle test environment for the development of transmission control unit(TCU) being provided.A DCT kinematic system model was set up,and the running status of DCT parts could be displayed in real time.The functions of MDCS were verified based on the extra-urban driving cycle(EUDC) and the vehicle road-test data respectively.The results show the functions of MDCS are accomplished,and the unified supporting platform for the development of TCU is achieved by MDCS.展开更多
基金Supported by Defense Advanced Research Support Project(62301030303)111 Project(B08043)
文摘In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existing tracked vehicle, a DCT structure was proposed. Matlab/Simulink was a dopted as a platform to develop the simulation model. The engine speed was controlled to follow the target speed as a launch strategy. Two control methods, a proportional integral derivative ( PID ) control method and a fuzzy control method, were proposed to control the engine throttle and oil pressure in order to track the target engine speed. Simulation results show that either the PID control or fuzzy control method can improve the starting performance compared with no loop control meth od. Fuzzy control method can lead a better starting quality compared with PID control method.
文摘Wet dual clutch transmissions(W-DCTs) show overall benefits including excellent fuel efficiency,wide torque capacity range,long durability,driving comfort and sportiness.Many breakthroughs have been made to further improve the fuel efficiency by design innovations and introductions of new hardware.Each W-DCT has its unique design and hardware.It demands the lubricant to provide excellent wet clutch friction performance and anti-shudder friction durability,good synchronizer friction performance and durability,high load-carrying ability,excellent bearing performance,strong anti-corrosion performance,high thermal and oxidative stability,excellent material compatibility,etc.Particularly,the requirement of the wet clutch friction performance in W-DCT is much more severe than conventional ATFs and CVTFs.We report here our latest W-DCTF technologies developed for different W-DCT applications.DCTF-1 was optimized for a two-sump W-DCT application with the clutch lining material of friction material A(FM-A).DCTF-1 shows high and stable dynamic friction,static friction,particularly,high quasi-static friction without any shudder tendency in GK tests.DCTF-2 was designed for a one-sump W-DCT application with the same clutch lining material of FM-A.DCTF-2 completes 42,000 cycles of the severe GTI chassis dynamometer vehicle test without any issues,which is comparable to the factory fill fluid DCTF-FF.DCTF-3 was developed for a one-sump W-DCT application with a different clutch lining material of FM-B.DCTF-3 shows high and stable dynamic friction in the severe newly developed SAE DCT test procedure.DCTF-3 also gives excellent LVFA durability of over 720 h in the JASO M349 test procedure on FM-B.
基金Science and Technology Commission of Shanghai Municipality,China (No. 08dz1150401)
文摘A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were linked as the nodes according to the interface mode of MDCS.A DCT simulation model was established based on Matlab/Simdriveline,whose running process was accurately controlled by the designed control system.The playback system of vehicle state(VPS) was proposed whose input was the road-test data,with a real vehicle test environment for the development of transmission control unit(TCU) being provided.A DCT kinematic system model was set up,and the running status of DCT parts could be displayed in real time.The functions of MDCS were verified based on the extra-urban driving cycle(EUDC) and the vehicle road-test data respectively.The results show the functions of MDCS are accomplished,and the unified supporting platform for the development of TCU is achieved by MDCS.