This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheologi...This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers.展开更多
An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vortic...An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time.The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures.While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process,the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted.In addition to quantitatively confirming conjectures of previous studies,further insight about the formation,evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.展开更多
基于双混频时差技术设计研制了8通道的频率稳定度测量系统,实现了对8路5 MHz或10 MHz频率标准的测量.当频率为10 MHz取样时间为1 s时,系统噪声本底优于2.0 X 10^(-13),取样时间为1000 s时,系统噪声本底优于2.5×10^(-16).不但可以...基于双混频时差技术设计研制了8通道的频率稳定度测量系统,实现了对8路5 MHz或10 MHz频率标准的测量.当频率为10 MHz取样时间为1 s时,系统噪声本底优于2.0 X 10^(-13),取样时间为1000 s时,系统噪声本底优于2.5×10^(-16).不但可以满足原子时标基准原子钟组的内部比对,也可实现对一般频率标准的检定和校准.
Abstract:
Based on the technique of Dual Mixer Time Difference (DMTD), an 8-channel frequency stabilitymeasurement system has been developed. It realized the measurement of 8-channel 5 MHz and 10 MHz frequencystandards. For 10 MHz frequency, the noise floor is better than 2.0 ×10^(-13)/1 s, 2.5× 10^(-16)/1000 s. It can not only satisfy the internal comparison of time scale ensemble, but also can realize the calibration of normal frequency standards.展开更多
基金supported by the National Natural Science Foundation of China(22078030,52021004)National Natural Science Foundation of Chongqing(2022NSCQ-LZX0271)+2 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-005)National Key Research and Development Project(2019YFC1905802,2022YFC3901204)Key Project of Independent Research Project of State Key Laboratory of coal mine disaster dynamics and control(2011DA105287-zd201902).
文摘This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers.
文摘An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time.The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures.While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process,the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted.In addition to quantitatively confirming conjectures of previous studies,further insight about the formation,evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.
文摘基于双混频时差技术设计研制了8通道的频率稳定度测量系统,实现了对8路5 MHz或10 MHz频率标准的测量.当频率为10 MHz取样时间为1 s时,系统噪声本底优于2.0 X 10^(-13),取样时间为1000 s时,系统噪声本底优于2.5×10^(-16).不但可以满足原子时标基准原子钟组的内部比对,也可实现对一般频率标准的检定和校准.
Abstract:
Based on the technique of Dual Mixer Time Difference (DMTD), an 8-channel frequency stabilitymeasurement system has been developed. It realized the measurement of 8-channel 5 MHz and 10 MHz frequencystandards. For 10 MHz frequency, the noise floor is better than 2.0 ×10^(-13)/1 s, 2.5× 10^(-16)/1000 s. It can not only satisfy the internal comparison of time scale ensemble, but also can realize the calibration of normal frequency standards.