期刊文献+
共找到46,520篇文章
< 1 2 250 >
每页显示 20 50 100
Three-Dimensional Wind Field Retrieved from Dual-Doppler Radar Based on a Variational Method:Refinement of Vertical Velocity Estimates 被引量:1
1
作者 Chenbin XUE Zhiying DING +1 位作者 Xinyong SHEN Xian CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第1期145-160,共16页
In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through min... In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through minimizing a cost function defined as a radial observation term with the standard conjugate gradient method,avoiding a weighting parameter specification step.Compared with conventional dual-Doppler wind synthesis approaches,this variational method minimizes errors caused by interpolation from radar observation to analysis grid in the iterative solution process,which is one of the main sources of errors.Then,through the accelerated Liebmann method,the vertical velocity is further reestimated as an extra step by solving the Poisson equation with impermeable conditions imposed at the ground and near the tropopause.The Poisson equation defined by the second derivative of the vertical velocity is derived from the mass continuity equation.Compared with the method proposed by O’Brien,this method is less sensitive to the uncertainty of the boundary conditions and has better stability and reliability.Furthermore,the method proposed in this paper is applied to Doppler radar observation of a squall line process.It is shown that the retrieved vertical wind profile agrees well with the vertical profile obtained with the velocity–azimuth display(VAD)method,and the retrieved radial velocity as well as the analyzed positive and negative velocity centers and horizontal wind shear of the squall line are in accord with radar observations.There is a good correspondence between the divergence field of the derived wind field and the vertical velocity.And,the horizontal and vertical circulations within and around the squall line,as well as strong updrafts,the associated downdrafts,and associated rear inflow of the bow echo,are analyzed well.It is worth mentioning that the variational method in this paper can be applied to simultaneously synthesize the three-dimensional wind field from multiple-Doppler radar observations. 展开更多
关键词 dual-doppler radar three-dimensional wind a variational method vertical velocity wind synthesis
下载PDF
Kinematic Structure of a Heavy Rain Event from Dual-Doppler Radar Observations 被引量:14
2
作者 邵爱梅 邱崇践 刘黎平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第4期609-616,共8页
The detailed kinematic structure of a heavy rain event that occurred in the middle reaches of the Yangtze River was investigated using dual-Doppler radar observation. A variational analysis method was developed to obt... The detailed kinematic structure of a heavy rain event that occurred in the middle reaches of the Yangtze River was investigated using dual-Doppler radar observation. A variational analysis method was developed to obtain the three-dimensional wind fields. Before the analysis, a data preprocessing procedure was carried out, in which the temporal variation with the scanning time interval and the effect of the earth curvature on the data position were taken into account. The analysis shows that a shear line in the lower and middle levels played an important role in the rainfall event. The precipitation fell mainly on the south end of the shear line where southerly flow prevailed and convergence and updraft were obvious. With the movement and decay of the shear line, the precipitation moved and decayed correspondingly. 展开更多
关键词 heavy rain mesoscale structure dual-doppler variational method
下载PDF
The Use of Dual-Doppler Radar Data in the Study of 1998 Meiyu Frontal Precipitationin Huaihe River Basin
3
作者 徐晖 张卫平 +4 位作者 郎需兴 郭霞 葛文忠 党人庆 武田乔男 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第3期403-412,共10页
During the Meiyu period in June and July of 1998, intensified field observations have been carried out for the project “Huaihe River Basin Energy and Water Cycle Experiment (HUBEX)”. For studying Meiyu front and its... During the Meiyu period in June and July of 1998, intensified field observations have been carried out for the project “Huaihe River Basin Energy and Water Cycle Experiment (HUBEX)”. For studying Meiyu front and its precipitation in Huaihe River basin, the present paper has performed analysis on the middle and lower level wind fields in the troposphere by using the radar data obtained from the two Doppler radars located at Fengtai district and Shouxian County. From June 29 to July 3 in 1998, the continuous heavy precipitation occurred in Huaihe River basin around Meiyu front. The precipitation process on July 2 occurred within the observation range of the two Doppler radar in Fengtai district and Shouxian County. The maximum rainfall of the Meiyu front was over 100 mm in 24 h, so it can be regarded as a typical mesoscale heavy precipitation process related to Meiyu front. Based on the wind field retrieved from the dual Doppler radar, we find that there are meso-γ scale vertical circulations in the vertical cross-section perpendicular to Meiyu front, the strong upward motion of which corresponds to the position of the heavy rainfall area. Furthermore, other results obtained by this study are identical with the results by analyzing the conventional synoptic data years ago. For example: in the vicinity of 3 km level height ahead of Meiyu front there exists a southwest low-level jet; the rainstorm caused by Meiyu front mainly occurs at the left side of the southwest low-level jet; and the Meiyu front causes the intensification of the low-level convergence in front of it. Key words Dual Doppler radar - Meiyu front - Meso—γ scale vertical circulation This research was supported by Project HUBEX (Project Number: 49794030) which is funded by the National Natural Science Foundation of China (NSFC). 展开更多
关键词 Dual Doppler radar Meiyu front Meso—γ scale vertical circulation
下载PDF
STRUCTURE OF MESO-β AND –γ-SCALE ON SOUTH CHINA HEAVY RAINFALL ON 12~13 JUNE 2005 USING DUAL-DOPPLER RADAR
4
作者 周海光 《Journal of Tropical Meteorology》 SCIE 2007年第2期137-140,共4页
The three-dimensional wind fields of the heavy rain on 12-13 June 2005 in Guangdong province are retrieved and studied with the volume scan data of the dual-Doppler radar located in the cities of Meizhou and Shantou. ... The three-dimensional wind fields of the heavy rain on 12-13 June 2005 in Guangdong province are retrieved and studied with the volume scan data of the dual-Doppler radar located in the cities of Meizhou and Shantou. It is shown that the meso-β-scale and meso-γ-scale convergence lines located in the convective system at the low and middle layer play an important role in the heavy rainfall. The convergence line is the initiating and maintaining mechanism of the rain. A three dimensional kinematic structure model is also given. 展开更多
关键词 中等尺度 中国 大雨 气象分析
下载PDF
Mesoscale Structure of Rainstorm Retrieved from Dual-Doppler Radar Observations Using the 4DVAR Assimilation Technique 被引量:4
5
作者 许小永 刘黎平 郑国光 《Acta meteorologica Sinica》 SCIE 2006年第3期334-351,共18页
The four-dimensional variational (4DVAR) data assimilation method was applied to dual-Doppler radar data about two Meiyu rainstorms observed during CHeRES (China Heavy Rain Experiment and Study). The purpose of th... The four-dimensional variational (4DVAR) data assimilation method was applied to dual-Doppler radar data about two Meiyu rainstorms observed during CHeRES (China Heavy Rain Experiment and Study). The purpose of this study is to examine the performance of the 4DVAR technique in retrieving rainstorm mesoscale structure and to reveal the feature of rainstorm mesoscale structure. Results demonstrated that the 4DVAR assimilation method was able to retrieve the detailed structure of wind, thermodynamics, and microphysics fields from dual-Doppler radar observations. The retrieved wind fields agreed with the dual- Doppler synthesized winds and were accurate. The distributions of the retrieved perturbation pressure, perturbation temperature, and microphysics fields were also reasonable through the examination of their physical consistency. Both of the two heavy rainfalls were caused by merging cloud processes. The wind shear and convergence lines at middle and lower levels were their primary dynamical characteristics. The convective system was often related to low-level convergence and upper-level divergence coupled with up- drafts. During its mature stage, the convective system was characterized by low pressure at lower level and high pressure at upper level, associated with warmer at middle level and colder at lower and upper levels than the environment. However, a region of cooling and high pressure occurred in the lower and middle levels compared to warming and low pressure in the upper level during its dissipating '.stage. The water vapor, cloud water, and rainwater corresponded to the convergence, the updraft and the intensive reflectivity, respectively. 展开更多
关键词 dual-doppler radar 4DVAR assimilation RETRIEVAL rainstorm mesoscale structure
原文传递
A Model Study of Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data 被引量:8
6
作者 孔凡铀 毛节泰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第2期162-174,共13页
A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fiel... A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated. 展开更多
关键词 dual-doppler weather radar Wind field analysis Numerical cloud model Error analysis
下载PDF
ERROR COMPARISON OF WIND FIELD RETRIEVAL FROM SINGLE AND DUAL-DOPPLER RADAR OBSERVATIONS 被引量:13
7
作者 陶祖钰 《Acta meteorologica Sinica》 SCIE 1994年第3期337-345,共9页
The error distributions of the wind fields retrieved from single and dual-Doppler radar observations are given in this paper.The results indicate that the error of dual-Doppler retrieval depends on the position in the... The error distributions of the wind fields retrieved from single and dual-Doppler radar observations are given in this paper.The results indicate that the error of dual-Doppler retrieval depends on the position in the scan region of the dual-Doppler radar.The error of single-Doppler retrieval by using velocity azimuth processing(VAP)technique de- pends on the angle between the directions of wind and the radar beam.Generally,the winds retrieved from single Doppl- er radar are close to those retrieved from dual-Doppler radar.But,the error distribution of the single-Doppler retrieval is different from the dual-Doppler retrieval.We simulate the retrievals of single Doppler observation by the use of the output wind data from a 3-D numerical model of severe convection.The comparison of the simulated single-and dual-Doppler retrievals shows that the VAP may be a suitable technique for the operational analysis of mesoscale wind fields.It can also be used as a supplement to wind field retrieval in the field experiment. 展开更多
关键词 Doppler radar wind field retrieval velocity azimuth processing(VAP)technique
原文传递
Study on Retrieving Three-Dimensional Wind Using Simulated Dual-Doppler Radar Data in the Cartesian Space
8
作者 周海光 张沛源 《Acta meteorologica Sinica》 SCIE 2005年第3期345-354,共10页
This paper investigates a technique of retrieving three-dimensional windfields from the dual-Doppler weather radar radial wind which is based on the Cartesian space usingvariational method. This technology provides a ... This paper investigates a technique of retrieving three-dimensional windfields from the dual-Doppler weather radar radial wind which is based on the Cartesian space usingvariational method. This technology provides a simultaneous resolution of three wind components andsatisfies both the minimal dual-equation system and the continuity equation. The main advantage ofthis method is that it can remove the potential drawback of an iterative solution of Cartesiandual-Doppler analysis techniques which is a major demerit when one retrieves the vertical velocityusing mass continuity equation with iterative method. The data pre-processing technology andinterpolation are also studied. This work developed a three-dimensional Cressman weighting functionto process the interpolation. In order to test the capability and advantage of this method, onenumerical experiment based on simulating dual-Doppler radar observations is designed. Firstly, wesynthesize the dual-Doppler radar radial velocity and reflectivity from the numerical model. Then,the three-dimensional wind components are retrieved from the radial velocity and reflectivity usingthis technique. The retrieved three-dimensional wind fields are found to be quite consisted withthose previously simulated wind fields. Mean difference, root-mean-square error, and relativedeviation are defined to test the precision of the method. These statistic errors reveal theaccuracy and the advantage of this method. The numerical experiment has definitely testified thatthis technique can be used to retrieve the three-dimensional wind fields from the radial velocityand reflectivity detected by the real dual-Doppler weather radar. 展开更多
关键词 dual-doppler weather radar three-dimensional wind fields variationalmethod INTERPOLATION RETRIEVAL
原文传递
Co-Sharing Waveform Design for Millimeter-Wave Radar Communication Systems
9
作者 Cui Gaofeng He Mengmin +2 位作者 Xu Lexi Wang Changheng Wang Weidong 《China Communications》 SCIE CSCD 2024年第6期305-318,共14页
Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co... Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation. 展开更多
关键词 co-sharing waveform MILLIMETER-WAVE radar communication radar sensing range and velocity estimation
下载PDF
Analysis of the joint detection capability of the SMILE satellite and EISCAT-3D radar 被引量:1
10
作者 JiaoJiao Zhang TianRan Sun +7 位作者 XiZheng Yu DaLin Li Hang Li JiaQi Guo ZongHua Ding Tao Chen Jian Wu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期299-306,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite European Incoherent Scatter Sciences Association(EISCAT)-3D radar joint detection
下载PDF
A target parameter estimation method via atom-reconstruction in radar mainlobe jamming
11
作者 ZHOU Bilei LIU Weijian +5 位作者 LI Rongfeng CHEN Hui ZHANG Liang DU Qinglei LI Binbin CHEN Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期350-360,共11页
Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target... Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target parameters and target direction estimation is difficult in radar MLJ.A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper.The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle.Precisely,the eigen-projection matrix processing(EMP)algorithm is adopted to suppress the MLJ,and the target range is estimated effectively through the beamforming and pulse compression.Then the target angle can be effectively estimated by the atom-reconstruction method.Without any prior knowledge,the MLJ can be canceled,and the angle estimation accuracy is well preserved.Furthermore,the proposed method does not have strict requirement for radar array construction,and it can be applied for linear array and planar array.Moreover,the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth(or elevation)equals to the jamming azimuth(or elevation),because the MLJ is suppressed in spatial plane dimension. 展开更多
关键词 mainlobe jamming ANTI-JAMMING atom-reconstruction radar
下载PDF
Overview of radar detection methods for low altitude targets in marine environments
12
作者 YANG Yong YANG Boyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期1-13,共13页
In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance... In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments. 展开更多
关键词 radar sea clutter multipath scattering detection low altitude target
下载PDF
Probabilistic modeling of multifunction radars with autoregressive kernel mixture network
13
作者 Hancong Feng Kaili.Jiang +4 位作者 Zhixing Zhou Yuxin Zhao Kailun Tian Haixin Yan Bin Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期275-288,共14页
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai... The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection. 展开更多
关键词 Probabilistic forecasting Multifunction radar Unsupervised learning Change point detection Outlier detection
下载PDF
Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
14
作者 Jiang HUANGFU Zhiqun HU +2 位作者 Jiafeng ZHENG Lirong WANG Yongjie ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1147-1160,共14页
Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a mult... Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods. 展开更多
关键词 polarimetric radar quantitative precipitation estimation deep learning single-parameter network multi-parameter network
下载PDF
Robust adaptive radar beamforming based on iterative training sample selection using kurtosis of generalized inner product statistics
15
作者 TIAN Jing ZHANG Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期24-30,共7页
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s... In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results. 展开更多
关键词 adaptive radar beamforming training sample selection non-homogeneous detector electronic jamming jamming suppression
下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
16
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling radar stealth Thermal insulation Computer simulation technology
下载PDF
Wideband radar cross-section reduction by a double-layer-plasma-based metasurface
17
作者 赵智明 李小平 +2 位作者 董果香 刘旭 牟相超 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期159-168,共10页
Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction... Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique. 展开更多
关键词 stealth technology radar cross-section(RCS)reduction backscattering cancellation double-layer-plasma-based metasurface
下载PDF
Characterization and Application of S-Band Polarimetric Radar and X-Band Phased Array Radar for a Tornadic Storm Event on June 16,2022
18
作者 陈炳洪 傅佩玲 +3 位作者 张羽 苏冉 田聪聪 陈超 《Journal of Tropical Meteorology》 SCIE 2024年第2期189-199,共11页
The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyze... The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyzed the characteristics and nowcasting signals of a tornado case that occurred on June 16,2022 in the Guangzhou region.Our findings indicate that the violent contraction of rotation radius and the dramatic increase in rotation speed were important signal characteristics associated with tornado formation.The X-band phased array radar,with its high temporal and spatial resolution,provided an opportunity to capture early warning signals from polarimetric characteristics.The X-band phased array radar demonstrated noteworthy ability to identify apparent tornado vortex signature(TVS)features in a 10-minute lead time,surpassing the capabilities of the CINRAD/SA radar.Additionally,due to its higher scanning frequency,the Xband phased-array radar was capable of consistently identifying TVS with shorter intervals,enabling a more precise tracking of the tornado's path.The application of professional radars,in this case,provides valuable insights for the monitoring of evolutions of severe local storms and even tornadoes and the issuance of early warning signals. 展开更多
关键词 TORNADOES X-band phased array radar MESOCYCLONE rotation radius
下载PDF
Detection of UAV Target Based on Continuous Radon Transform and Matched Filtering Process for Passive Bistatic Radar
19
作者 Luo Zuo Yuefei Yan +6 位作者 Jun Wang Xin Sang Yan Wang Dongming Ge Lihao Ping Zhihai Wang Congsi Wang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期9-18,共10页
Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle(UAV)in the passive bistatic radar(PBR),while range migration(RM)and Doppler frequency migration... Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle(UAV)in the passive bistatic radar(PBR),while range migration(RM)and Doppler frequency migration(DFM)may have a major effect due to the target maneuverability.This paper proposed an innovative long-time coherent integration approach,regarded as Continuous Radon-matched filtering process(CRMFP),for low-observable UAV target in passive bistatic radar.It not only mitigates the RM by collaborative research in range and velocity dimensions but also compensates the DFM and ensures the coherent integration through the matched filtering process(MFP).Numerical and real-life data following detailed analysis verify that the proposed method can overcome the Doppler mismatch influence and acquire comparable detection performance. 展开更多
关键词 passive bistatic radar unmanned aerial vehicle long-time coherent integration Radon-matched filtering process
下载PDF
Coarse-fine joint target parameter estimation method based on AN-RSC in OFDM passive radar
20
作者 WANG Chujun WAN Xianrong +1 位作者 YI Jianxin CHENG Feng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期339-349,共11页
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to... In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation. 展开更多
关键词 passive radar orthogonal frequency division multiplexing(OFDM)signal atomic norm(AN) parameter estimation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部