Unraveling the catalytic reaction mechanism is a long-term challenge for developing efficient catalysts.The blooming bimetallic catalyst have enabled to activate inert bonds and realize complex C-C formation.Herein,we...Unraveling the catalytic reaction mechanism is a long-term challenge for developing efficient catalysts.The blooming bimetallic catalyst have enabled to activate inert bonds and realize complex C-C formation.Herein,we theoretically discover a dual-phosphinito bridged hetero-bimetallic species that verified by NMR experiments.Our results indicate only dual-phosphinito Ni-Al model can be an active catalyst in asymmetric cycloadditions via C-C activation and C-H activation,which can well rationalize the experimental observations for both reactivity and stereo-selectivity.An unprecedented tandem redox dehydrogenation mechanism was revealed to control the formation of this active species overriding the inherent basicity.Synergistic Lewis acid and eg orbital interactions,including dz2 orbital reoccupation and d_(x^(2)−y^(2))orbital recombination,were disclosed to understand both thermodynamic and kinetic advance of dual-bridged model,displaying feasible redox properties.展开更多
基金We gratefully acknowledge the National Key Research and Development Program of China(No.2021YFA1500100)the National Natural Science Foundation of China(Nos.92156017,21890722,22188101)+2 种基金the NSF of Tianjin Municipality(No.19JCJQJC62300)Tianjin Research Innovation Project for Postgraduate Students(No.2019YJSB081)Haihe Laboratory of Sustainable Chemical Transformation of Tianjin for generous financial support.
文摘Unraveling the catalytic reaction mechanism is a long-term challenge for developing efficient catalysts.The blooming bimetallic catalyst have enabled to activate inert bonds and realize complex C-C formation.Herein,we theoretically discover a dual-phosphinito bridged hetero-bimetallic species that verified by NMR experiments.Our results indicate only dual-phosphinito Ni-Al model can be an active catalyst in asymmetric cycloadditions via C-C activation and C-H activation,which can well rationalize the experimental observations for both reactivity and stereo-selectivity.An unprecedented tandem redox dehydrogenation mechanism was revealed to control the formation of this active species overriding the inherent basicity.Synergistic Lewis acid and eg orbital interactions,including dz2 orbital reoccupation and d_(x^(2)−y^(2))orbital recombination,were disclosed to understand both thermodynamic and kinetic advance of dual-bridged model,displaying feasible redox properties.