期刊文献+
共找到1,401篇文章
< 1 2 71 >
每页显示 20 50 100
Singular perturbation composite control of a free-floating flexible dual-arm space robot
1
作者 罗战武 王从庆 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第1期43-47,70,共6页
The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. ... The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods. 展开更多
关键词 free-floating Flexible dual-arm space robot singular perturbation robust tracking control vibration suppression
下载PDF
Adaptive neural network control for coordinated motion of a dual-arm space robot system with uncertain parameters
2
作者 郭益深 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第9期1131-1140,共10页
Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversati... Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme. 展开更多
关键词 flee-floating dual-arm space robot RBF neural network GL matrix andits product operator coordinated motion adaptive control
下载PDF
Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters 被引量:20
3
作者 Ying-Hong Jia Quan Hu Shi-Jie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期112-124,共13页
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro... A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. 展开更多
关键词 space robot Dynamics. Adaptive control Closed-loop constraint Parameter uncertainty - Kane's equation
下载PDF
Detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target 被引量:9
4
作者 Gang CHEN Yuqi WANG +3 位作者 Yifan WANG Ji LIANG Long ZHANG Guangtang PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1093-1106,共14页
The rotational motion of a tumbling target brings great challenges to space robot on successfully capturing the tumbling target.Therefore,it is necessary to reduce the target's rotation to a rate at which capture ... The rotational motion of a tumbling target brings great challenges to space robot on successfully capturing the tumbling target.Therefore,it is necessary to reduce the target's rotation to a rate at which capture can be accomplished by the space robot.In this paper,a detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target is proposed.This strategy can reduce the target's rotational velocity while maintaining base attitude stability through the establishment of the rotation attenuation controller and base attitude adjustment controller.The rotation attenuation controller adopts the multi-space hybrid impedance control method to control the friction precisely.The base attitude adjustment controller applies the dual-arm extended Jacobian matrix to stabilize the base attitude.The main contributions of this paper are as follows:(1)The compliant control method is adopted to achieve a precise friction control,which can reduce the target angular velocity steadily;(2)The dual-arm extended Jacobian matrix is applied to stabilize the base attitude without affecting the target capture task;(3)The detumbling strategy of dualarm space robot is designed considering base attitude stabilization,realizing coordinated planning of the base attitude and the arms.The strategy is verified by a dual-arm space robot with two 7-DOF(degrees of freedom)arms.Simulation results show that,target with a rotation velocity of 20(°)/s can be effectively controlled to stop within 30 s,and the final deflection of the base attitude is less than 0.15°without affecting the target capture task,verifying the correctness and effectiveness of the strategy.Except to the tumbling target capture task,the control strategy can also be applied to other typical on-orbit operation tasks such as space debris removal and spacecraft maintenance. 展开更多
关键词 Detumbling strategy dual-arm space robot Free-floating base Friction control Tumbling target capturing
原文传递
The Fuzzy Neural Network Control Scheme With H∞ Tracking Characteristic of Space Robot System With Dual-arm After Capturing a Spin Spacecraft
5
作者 Jing Cheng Li Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1417-1424,共8页
In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f... In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results. 展开更多
关键词 Capturing operation calm motion control closed chain system dual-arm space robot recurrent fuzzy neural network H∞tracking characteristic
下载PDF
Area-oriented coordinated trajectory planning of dual-arm space robot for capturing a tumbling target 被引量:8
6
作者 Wenfu XU Lei YAN +1 位作者 Zhonghua HU Bin LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第9期2151-2163,共13页
The growing amount of space debris poses a threat to operational spacecraft and the long-term sustainability of activities in outer space. According to the orbital mechanics, an uncontrolled space object will be tumbl... The growing amount of space debris poses a threat to operational spacecraft and the long-term sustainability of activities in outer space. According to the orbital mechanics, an uncontrolled space object will be tumbling, bringing great challenge to capture and remove it. In this paper, a dual-arm coordinated ‘‘Area-Oriented Capture'(AOC) method is proposed to capture a non-cooperative tumbling target. Firstly, the motion equation of the tumbling target is established, based on which, the dynamic properties are analyzed. Then, the ‘‘Area-Oriented Capture'concept is presented to deal with the problem of large pose(position and attitude) deviation and tumbling motion. An area rather than fixed points/devices is taken as the object to be tracked and captured. As long as the manipulators’ end-effectors move to a specified range of the objective areas(not fixed points on the target, but areas), the target satellite will be hugged by the two arms.At last, the proposed method and the traditional method(i.e. fixed-point oriented capture method)are compared and analyzed through simulation. The results show that the proposed method has larger pose tolerance and takes shorter time for capturing a tumbling target. 展开更多
关键词 Area-oriented capture dual-arm coordination space DEBRIS removal space robot TUMBLING TARGET capturing
原文传递
Behavior of Delivery Robot in Human-Robot Collaborative Spaces During Navigation
7
作者 Kiran Jot Singh Divneet Singh Kapoor +3 位作者 Mohamed Abouhawwash Jehad F.Al-Amri Shubham Mahajan Amit Kant Pandit 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期795-810,共16页
Navigation is an essential skill for robots.It becomes a cumbersome task for the robot in a human-populated environment,and Industry 5.0 is an emerging trend that focuses on the interaction between humans and robots.R... Navigation is an essential skill for robots.It becomes a cumbersome task for the robot in a human-populated environment,and Industry 5.0 is an emerging trend that focuses on the interaction between humans and robots.Robot behavior in a social setting is the key to human acceptance while ensuring human comfort and safety.With the advancement in robotics technology,the true use cases of robots in the tourism and hospitality industry are expanding in number.There are very few experimental studies focusing on how people perceive the navigation behavior of a delivery robot.A robotic platform named“PI”has been designed,which incorporates proximity and vision sensors.The robot utilizes a real-time object recognition algorithm based on the You Only Look Once(YOLO)algorithm to detect objects and humans during navigation.This study is aimed towards evaluating human experience,for which we conducted a study among 36 participants to explore the perceived social presence,role,and perception of a delivery robot exhibiting different behavior conditions while navigating in a hotel corridor.The participants’responses were collected and compared for different behavior conditions demonstrated by the robot and results show that humans prefer an assistant role of a robot enabled with audio and visual aids exhibiting social behavior.Further,this study can be useful for developers to gain insight into the expected behavior of a delivery robot. 展开更多
关键词 Human-robot interaction robot navigation robot behavior collaborative spaces industrial IoT industry 5.0
下载PDF
Capture and detumbling control for active debris removal by a dual-arm space robot 被引量:1
8
作者 Dong HAN Gangqi DONG +1 位作者 Panfeng HUANG Zhiqing MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第9期342-353,共12页
Active debris removal(ADR) technology is an effective approach to remediate the proliferation of space debris, which seriously threatens the operational safety of orbital spacecraft. This study aims to design a contro... Active debris removal(ADR) technology is an effective approach to remediate the proliferation of space debris, which seriously threatens the operational safety of orbital spacecraft. This study aims to design a controller for a dual-arm space robot to capture tumbling debris, including capture control and detumbling control. Typical space debris is considered as a non-cooperative target, which has no specific capture points and unknown dynamic parameters. Compliant clamping control and the adaptive backstepping-based prescribed trajectory tracking control(PTTC)method are proposed in this paper. First, the differential geometry theory is utilized to establish the constraint equations, the dynamic model of the chaser-target system is obtained by applying the Hamilton variational principle, and the compliance clamping controller is further designed to capture the non-cooperative target without contact force feedback. Next, in the post-capture phase,an adaptive backstepping-based PTTC is proposed to detumble the combined spacecraft in the presence of model uncertainties. Finally, numerical simulations are carried out to validate the feasibility of the proposed capture and detumbling control method. Simulation results indicate that the target detumbling achieved by the PTTC method can reduce propellant consumption by up to24.11%. 展开更多
关键词 Active debris removal Adaptive backstepping control Compliant clamping control Prescribed trajectory tracking space robot
原文传递
Spatial Operator Algebra for Free-floating Space Robot Modeling and Simulation 被引量:9
9
作者 TIAN Zhixiang WU Hongtao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期635-640,共6页
As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simu... As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot. 展开更多
关键词 nonholonomic constrained spatial operator algebra DYNAMIC free-floating space robot
下载PDF
Adaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters 被引量:4
10
作者 Rong-Hua Lei Li Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期964-971,共8页
Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co... Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme. 展开更多
关键词 space robot Actuator faults Uncertain parameters Effectiveness factor Fault-tolerant control
下载PDF
Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space 被引量:3
11
作者 Liangyong WANG Tianyou CHAI Zheng FANG 《控制理论与应用(英文版)》 EI 2009年第2期112-118,共7页
A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task sp... A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies. 展开更多
关键词 robotic manipulator Motion control Neural network Task space
下载PDF
Reduced Model Based Control of Two Link Flexible Space Robot 被引量:11
12
作者 Amit Kumar Pushparaj Mani Pathak Nagarajan Sukavanam 《Intelligent Control and Automation》 2011年第2期112-120,共9页
Model based control schemes use the inverse dynamics of the robot arm to produce the main torque component necessary for trajectory tracking. For model-based controller one is required to know the model parameters acc... Model based control schemes use the inverse dynamics of the robot arm to produce the main torque component necessary for trajectory tracking. For model-based controller one is required to know the model parameters accurately. This is a very difficult task especially if the manipulator is flexible. So a reduced model based controller has been developed, which requires only the information of space robot base velocity and link parameters. The flexible link is modeled as Euler Bernoulli beam. To simplify the analysis we have considered Jacobian of rigid manipulator. Bond graph modeling is used to model the dynamics of the system and to devise the control strategy. The scheme has been verified using simulation for two links flexible space manipulator. 展开更多
关键词 Flexible space robotS BOND GRAPH Modeling REDUCED Model Based CONTROLLER Euler-Bernoulli Beam
下载PDF
Impedance control of multi-arm space robot for the capture of non-cooperative targets 被引量:3
13
作者 GE Dongming SUN Guanghui +1 位作者 ZOU Yuanjie SHI Jixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期1051-1061,共11页
Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This ... Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method. 展开更多
关键词 multi-arm space robot impedance control non-cooperative target CAPTURE
下载PDF
Anti-Dead-Zone Integral Sliding Control and Active Vibration Suppression of a Free-floating Space Robot with Elastic Base and Flexible Links 被引量:2
14
作者 Xiaoqin Huang Li Chen 《Journal of Beijing Institute of Technology》 EI CAS 2020年第1期120-128,共9页
Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were di... Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were discussed.First,using the Lagrange equation of the second kind,the dynamic model of the system was derived.Second,utilizing singular perturbation theory,a slow subsystem describing the rigid motion and a fast subsystem corresponding to flexible vibration were obtained.For the slow subsystem,when the width of deadzone is uncertain,a dead-zone pre-compensator was designed to eliminate the impact of joint torque output dead-zone,and an integral sliding mode neural network control was proposed.The integral sliding mode term can reduce the steady state error.For the fast subsystem,an optimal linear quadratic regulator(LQR)controller was adopted to damp out the vibration of the flexible links and elastic base simultaneously.Finally,computer simulations show the effectiveness of the compound control method. 展开更多
关键词 space robot with flexible LINKS ELASTIC BASE DEAD-ZONE proportional-integral SLIDING mode control active vibration suppression
下载PDF
Unified Modeling Approach of Kinematics, Dynamics and Control of a Free-Flying Space Robot Interacting with a Target Satellite 被引量:3
15
作者 Murad Shibli 《Intelligent Control and Automation》 2011年第1期8-23,共16页
In this paper a unified control-oriented modeling approach is proposed to deal with the kinematics, linear and angular momentum, contact constraints and dynamics of a free-flying space robot interacting with a target ... In this paper a unified control-oriented modeling approach is proposed to deal with the kinematics, linear and angular momentum, contact constraints and dynamics of a free-flying space robot interacting with a target satellite. This developed approach combines the dynamics of both systems in one structure along with holonomic and nonholonomic constraints in a single framework. Furthermore, this modeling allows consid-ering the generalized contact forces between the space robot end-effecter and the target satellite as internal forces rather than external forces. As a result of this approach, linear and angular momentum will form holonomic and nonholonomic constraints, respectively. Meanwhile, restricting the motion of the space robot end-effector on the surface of the target satellite will impose geometric constraints. The proposed momentum of the combined system under consideration is a generalization of the momentum model of a free-flying space robot. Based on this unified model, three reduced models are developed. The first reduced dynamics can be considered as a generalization of a free-flying robot without contact with a target satellite. In this re-duced model it is found that the Jacobian and inertia matrices can be considered as an extension of those of a free-flying space robot. Since control of the base attitude rather than its translation is preferred in certain cases, a second reduced model is obtained by eliminating the base linear motion dynamics. For the purpose of the controller development, a third reduced-order dynamical model is then obtained by finding a common solution of all constraints using the concept of orthogonal projection matrices. The objective of this approach is to design a controller to track motion trajectory while regulating the force interaction between the space robot and the target satellite. Many space missions can benefit from such a modeling system, for example, autonomous docking of satellites, rescuing satellites, and satellite servicing, where it is vital to limit the con-tact force during the robotic operation. Moreover, Inverse dynamics and adaptive inverse dynamics control-lers are designed to achieve the control objectives. Both controllers are found to be effective to meet the specifications and to overcome the un-actuation of the target satellite. Finally, simulation is demonstrated by to verify the analytical results. 展开更多
关键词 Free-Flying space robot Target Satellite SERVICING FLYING robot Adaptive CONTROL Inverse Dynamic CONTROL HUBBLE Telescope
下载PDF
Configuration Design of an Under-Actuated Robotic Hand Based on Maximum Grasping Space 被引量:2
16
作者 Shang-Ling Qiao Rong-Qiang Liu +2 位作者 Hong-Wei Guo Yu-Xuan Liu Zong-Quan Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期45-53,共9页
Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. How... Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. However, the structures of current capture devices are complex, and both space debris and abandoned spacecraft are non?cooperative targets. To capture non?cooperative targets in space, a lightweight, less driven under?actuated robotic hand is proposed in this paper, which composed by tendon?pulley transmission and double?stage mechanisms, and always driven by only one motor in process of closing finger. Because of the expandability, general grasping model is constructed. The equivalent joint driving forces and general grasping force are analyzed based on the model and the principle of virtual work. Which reveal the relationship among tendon driving force, joint driving forces and grasping force. In order to configure the number of knuckles of finger, a new analysis method which takes the maximum grasping space into account, is proposed. Supposing the maximum grasped object is an envelope circle with diameter of 2.5m. In the condition, a finger grasping maximum envelope circle with different knuckles is modeled. And the finger lengths with corresponding knuckles are calculated out. The finger length which consists of three knuckles is the shortest among under?actuated fingers consists of not more than five knuckles. Finally, the principle prototype and prototype robotic hand which consists of two dingers are designed and assembled. Experiments indicate that the under?actuated robotic hand can satisfy the grasp requirements. 展开更多
关键词 Under?actuated robotic hand Tendon?pulley transmission Grasping space Configuration design
下载PDF
The ZigBee Based Wireless Sensor and Actor Network in Intelligent Space Oriented to Home Service Robot 被引量:1
17
作者 Fei Lu Guo-Hui Tian 《International Journal of Communications, Network and System Sciences》 2012年第5期280-285,共6页
In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, bas... In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, based on the characteristics of ZigBee protocol, ZigBee technology is used to construct a wireless sensor and actor network. Several intelligent services based on ZigBee wireless sensor and actor network are shown to certify the reliability of this communication network. ZigBee wireless sensor and actor network builds an information bridge for the components in the intelligent space, the spatially distributed devices are connected together seamlessly. With this network, robot can share the mass information in the intelligent space and improve its performance with 'light-packs', devices in intelligent space, such as lamp, curtain can be controlled autonomously. 展开更多
关键词 Intelligent space HOME Service robot Wireless Sensor and ACTOR NETWORK ZIGBEE Technology
下载PDF
Zigbee Based Wireless Sensor and Actuator Network for Service Robot Intelligent Space 被引量:1
18
作者 Baoye Song Xiao Lu Xingzhen Bai 《Wireless Sensor Network》 2012年第10期235-242,共8页
Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter... Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions. 展开更多
关键词 ZIGBEE WIRELESS SENSOR and ACTUATOR Network Service robot INTELLIGENT space
下载PDF
New self-calibration approach to space robots based on hand-eye vision 被引量:3
19
作者 刘宇 刘宏 +1 位作者 倪风雷 徐文福 《Journal of Central South University》 SCIE EI CAS 2011年第4期1087-1096,共10页
To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) a... To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) attached to its end-effector was presented.Using the relative pose errors between the two adjacent calibration positions of the space robot,the cost function of the calibration was built,which was different from the conventional calibration method.The particle swarm optimization algorithm(PSO) was used to optimize the function to realize the geometrical parameter identification of the space robot.The above calibration method was carried out through self-calibration simulation of a six-DOF space robot whose end-effector was equipped with hand-eye vision.The results showed that after calibration there was a significant improvement of tool pose accuracy in a set of independent reference positions,which verified the feasibility of the method.At the same time,because it was unnecessary for this method to know the transformation matrix from the robot base to the calibration plate,it reduced the complexity of calibration model and shortened the error propagation chain,which benefited to improve the calibration accuracy. 展开更多
关键词 空间机器人 校准方法 机器人手 视力 粒子群优化算法 成本函数 标定方法 温度环境
下载PDF
Sequence Planning for On-Orbit Assembly of Large Space Truss Structures in a Multirobot Environment
20
作者 GUO Jifeng,WANG Ping,CUI Naigang (Deptartment of Astronautic Engineering,Harbin Institute of Technology,Harbin 150001,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期319-324,共6页
An approach to sequence planning for on-orbit assembly of large space truss structures in a multirobot environment is presented. A hierarchical representation of large space truss structures at the structural volume e... An approach to sequence planning for on-orbit assembly of large space truss structures in a multirobot environment is presented. A hierarchical representation of large space truss structures at the structural volume element level and strut level is adopted. The representation of connectivity matrix and directed graph is respectively presented at the strut level and SVE level. The multirobot environment that consists of autonomous space robots and struts is supposed. Then the multirobot serial assembly strategy,assembly states,assembly tasks and assembly sequences are described. The assembly sequence planning algorithms at the strut level and SVE level are respectively discussed. The results of the simulations show that this approach is feasible and efficient. Two extensions of this approach include more accurate assessment of the efficiency representation and improvements in planning algorithm. In the future,the assembly sequence planning of more large space truss structures and complex multirobot environments and assembly tasks will be considered. 展开更多
关键词 assembly PLANNING AUTONOMOUS space robot large space TRUSS structures.
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部