Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly...Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy.展开更多
The enhancement of medical images is a challenging research task due to the unforeseeable variation in the quality of the captured images.The captured images may present with low contrast and low visibility,which migh...The enhancement of medical images is a challenging research task due to the unforeseeable variation in the quality of the captured images.The captured images may present with low contrast and low visibility,which might inuence the accuracy of the diagnosis process.To overcome this problem,this paper presents a new fractional integral entropy(FITE)that estimates the unforeseeable probabilities of image pixels,posing as the main contribution of the paper.The proposed model dynamically enhances the image based on the image contents.The main advantage of FITE lies in its capability to enhance the low contrast intensities through pixels’probability.Initially,the pixel probability of the fractional power is utilized to extract the illumination value from the pixels of the image.Next,the contrast of the image is then adjusted to enhance the regions with low visibility.Finally,the fractional integral entropy approach is implemented to enhance the low visibility contents from the input image.Tests were conducted on brain MRI,lungs CT,and kidney MRI scans datasets of different image qualities to show that the proposed model is robust and can withstand dramatic variations in quality.The obtained comparative results show that the proposed image enhancement model achieves the best BRISQUE and NIQE scores.Overall,this model improves the details of brain MRI,lungs CT,and kidney MRI scans,and could therefore potentially help the medical staff during the diagnosis process.展开更多
基金This work is supported by the Natural Science Foundation of China(No.82372035)National Transportation Preparedness Projects(No.ZYZZYJ).Light of West China(No.XAB2022YN10)The China Postdoctoral Science Foundation(No.2023M740760).
文摘Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy.
基金funded by the Deanship of Scientic Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Progr。
文摘The enhancement of medical images is a challenging research task due to the unforeseeable variation in the quality of the captured images.The captured images may present with low contrast and low visibility,which might inuence the accuracy of the diagnosis process.To overcome this problem,this paper presents a new fractional integral entropy(FITE)that estimates the unforeseeable probabilities of image pixels,posing as the main contribution of the paper.The proposed model dynamically enhances the image based on the image contents.The main advantage of FITE lies in its capability to enhance the low contrast intensities through pixels’probability.Initially,the pixel probability of the fractional power is utilized to extract the illumination value from the pixels of the image.Next,the contrast of the image is then adjusted to enhance the regions with low visibility.Finally,the fractional integral entropy approach is implemented to enhance the low visibility contents from the input image.Tests were conducted on brain MRI,lungs CT,and kidney MRI scans datasets of different image qualities to show that the proposed model is robust and can withstand dramatic variations in quality.The obtained comparative results show that the proposed image enhancement model achieves the best BRISQUE and NIQE scores.Overall,this model improves the details of brain MRI,lungs CT,and kidney MRI scans,and could therefore potentially help the medical staff during the diagnosis process.