期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
基于双节点-双边图神经网络的茶叶病害分类方法 被引量:1
1
作者 张艳 车迅 +2 位作者 汪芃 汪玉凤 胡根生 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期252-262,共11页
传统茶叶病害分类主要依赖人工方法,此类方法费工费时,同时茶叶病害样本较少使得现有的机器学习方法的模型训练不充分,病害分类准确率不够高。针对茶炭疽病、茶黑煤病、茶饼病和茶白星病4类病害,提出一种基于双节点-双边图神经网络的茶... 传统茶叶病害分类主要依赖人工方法,此类方法费工费时,同时茶叶病害样本较少使得现有的机器学习方法的模型训练不充分,病害分类准确率不够高。针对茶炭疽病、茶黑煤病、茶饼病和茶白星病4类病害,提出一种基于双节点-双边图神经网络的茶叶病害分类方法。首先通过两分支卷积神经网络提取RGB茶叶病害特征和灰度茶叶病害特征,两分支均采用ResNet12作为骨干网络,参数独立不共享,两类特征作为图神经网络的两个子节点,以获得不同域样本所包含的病害信息;其次构建相对度量边和相似性边两类边,从而强化节点对相邻节点所含病害特征的聚合能力。最后,经过双节点特征和双边特征更新模块,实现双节点和双边交替更新,提高边特征对节点距离度量的准确性,从而实现训练样本较少条件下对茶叶病害的准确分类。本文方法和小样本学习方法进行了对比实验,结果表明,本文方法获得更高的准确率,在miniImageNet和PlantVillage数据集上5way-1shot的准确率分别达到69.30%和88.42%,5way-5shot准确率分别为82.48%和93.04%。同时在茶叶数据集TeaD-5上5way-1shot和5way-5shot准确率分别达到84.74%和86.34%。 展开更多
关键词 茶叶 病害分类 图神经网络 双节点 相对度量边 相似性边
下载PDF
基于双粒度图的文档级关系抽取
2
作者 廖涛 张国畅 张顺香 《计算机工程》 CAS CSCD 北大核心 2024年第10期164-173,共10页
文档级关系抽取是指在非结构性文本中抽取实体对之间的关系。针对当前文档级关系抽取方法未能充分利用文档语义信息且难以处理文档的噪声干扰问题,提出一种基于双粒度文档图的关系抽取模型,采用一种新型的构图思路以及降噪方法,分别在... 文档级关系抽取是指在非结构性文本中抽取实体对之间的关系。针对当前文档级关系抽取方法未能充分利用文档语义信息且难以处理文档的噪声干扰问题,提出一种基于双粒度文档图的关系抽取模型,采用一种新型的构图思路以及降噪方法,分别在句间和句内两个层面进行设计。首先,在句间层面使用修辞语篇关系实体提及关系构建修辞语篇关系图RST-graph,采用异步降噪方式生成粗粒度文档图(CGD-graph),缓解了因实体对的句间关系路径长于句内关系路径造成的结构性误剪枝问题。然后,在句内层面采用依存句法关系对文档中的句子进行解析,构造依存句法树(SDT),增强句内语义信息。最后,将SDT和CGD-graph中存在的公共锚点相连接,构造细粒度文档图(FGD-graph)。实验结果表明,与去噪图推理(DGI)模型相比,该模型的lgn F1值和F1值分别提升了0.40和0.51个百分点,并且在实体对的多标签关系上随着标签数量的增多抽取效果提升较为显著。 展开更多
关键词 文档级 关系抽取 双粒度文档图 异步降噪 修辞语篇关系 依存句法关系
下载PDF
用户生成内容场景下角色导向图神经推荐方法
3
作者 娄铮铮 朱军娇 +1 位作者 张万闯 吴宾 《计算机学报》 EI CAS CSCD 北大核心 2024年第6期1288-1303,共16页
近年来互联网的飞速发展不断改变着信息的生产和传递方式,随之出现了用户使用互联网的新方式——用户生成内容(User-Generated Content,UGC).该场景中内容以传播速度快、获取成本低等优势迅速占据互联网信息传播的重要地位.不同于传统... 近年来互联网的飞速发展不断改变着信息的生产和传递方式,随之出现了用户使用互联网的新方式——用户生成内容(User-Generated Content,UGC).该场景中内容以传播速度快、获取成本低等优势迅速占据互联网信息传播的重要地位.不同于传统推荐场景,UGC场景下用户同时扮演生产者和消费者双重角色,这使得在构建推荐模型时既需要考虑消费者与内容之间的交互信息,也需关注内容生产者对于消费者决策的影响.因此,UGC场景下个性化推荐算法研究的关键在于如何充分挖掘消费者-内容和消费者-生产者之间的关联关系.在面向UGC场景的推荐研究中,比较有代表性的模型为CPRec,该模型虽取得一定进展,但仍存在两点不足之处.其一,在模型构建层面,未能显式建模消费者-内容与消费者-生产者之间的高阶连通关系,难以学习出高质量的节点表征.其二,在模型优化层面,无法区分每个观测数据在不同训练阶段的贡献度,将影响推荐结果的质量.为此,本文提出一种新颖的角色导向图神经推荐方法RGNRec(Role-Guided Graph Neural Recommendation)用于UGC场景的个性化排序任务.特别地,基于用户的历史行为数据与内容的创作者信息分别构建了消费者-内容交互图和消费者-生产者交互图.进一步,为了显式捕获两种交互图中的高阶连通信息,构建一种双通道线性传播模块,同时刻画了消费者兴趣与内容生产者影响的扩散过程.最终,提出设计一种自适应的正样本权重生成策略,将其融入非采样损失函数,并建立双层优化机制来学习模型的参数.本文的核心贡献包括:(1)引入双通道线性传播模块,以显式解耦出自身兴趣与内容生产者效应对于用户偏好建模的不同贡献度;(2)提出权重自适应的非采样损失函数,以解决不同观测样例在模型不同训练阶段贡献不同的问题.本文分别采用经典的和最先进的图神经网络方法作为基准,在3个UGC场景Pinterest、Recipes和Reddit下进行了实验对比.在整体推荐性能方面,无论模型精度亦或训练效率上均优于各基准方法,尤其在Precision@10指标上获得了 4.31%~17.83%的提升;然后通过消融实验验证了双通道线性传播模块和权重自适应优化机制的合理性与必要性;最后通过实验验证了本文方法在缓解数据稀疏和用户冷启动方面的优越性. 展开更多
关键词 推荐系统 图神经网络 用户生成内容 双重角色 非采样学习
下载PDF
基于Sobel算子桥接的双编码器路面裂缝检测网络
4
作者 蓝章礼 徐元通 +2 位作者 赵胜薇 张洪 黄大荣 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期18-24,33,共8页
为提高道路路面裂缝的检测精度,针对路面裂缝的多态性和噪声复杂等问题,提出了一种基于Sobel算子桥接的双编码器路面裂缝检测网络,双编码器由原图编码和梯度编码两部分组成,以解决单编码器容易丢失梯度信息的问题。首先,原图编码结果通... 为提高道路路面裂缝的检测精度,针对路面裂缝的多态性和噪声复杂等问题,提出了一种基于Sobel算子桥接的双编码器路面裂缝检测网络,双编码器由原图编码和梯度编码两部分组成,以解决单编码器容易丢失梯度信息的问题。首先,原图编码结果通过桥接Sobel算子计算8个方向产生梯度编码的编码信息;然后,将原图编码结果与梯度编码结果通过一个多尺度的边缘信息弥补模块,以增强裂缝的边缘信息;最后,引入动态通道图卷积获得通道之间存在的拓扑关系,以突出重要通道的语义特征。研究结果表明:所提出的方法在DeepCrack、CamCrack789和CFD这3个基准数据集上取得较好的结果;综合指标ODS在DeepCrack、CamCrack789和CFD数据集分别为87.75%、85.05%、78.83%。 展开更多
关键词 道路工程 路面裂缝检测 双编码器 SOBEL算子 边缘信息弥补 动态通道图卷积
下载PDF
基于超球面对偶学习的双通道图异常检测方法
5
作者 李青 钟将 倪航 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2212-2218,共7页
图异常检测作为一项重要的数据挖掘任务,专注于识别与大多数节点显著偏离的异常节点.随着无监督图神经网络技术的进步,现已开发出了基于密度估计、对抗生成网络等多种高效识别图数据中潜在异常的方法 .然而,这些方法更注重无监督图异常... 图异常检测作为一项重要的数据挖掘任务,专注于识别与大多数节点显著偏离的异常节点.随着无监督图神经网络技术的进步,现已开发出了基于密度估计、对抗生成网络等多种高效识别图数据中潜在异常的方法 .然而,这些方法更注重无监督图异常检测生成高质量的表征,而往往忽略了图异常的特性.因此,本文提出了一个双通道异构图异常检测模型(Dual-channel Heterogeneous Graph Anomaly Detection,HD-GAD).其模型基础架构包括双通道的图神经网络:全局子结构感知的图神经网络和局部子结构感知的图神经网络,用于图异常检测捕获全局和局部子结构属性.同时,基于对偶推断引入了多超球体学习目标(Multi-Hypersphere Learning,MHL),从宏观和介观超球体角度,分别测量在整个图/社区结构中偏离的异常节点. HD-GAD模型利用相似度函数EmbSim优化训练目标,以缓解多超球面学习中的模型坍问题.最后,在五种不同的数据集上进行了全面的实验.其AUC(Area Under Curve)值在大多数情况下均超过了0.9,达到了行业领先水平,进一步证明了HD-GAD模型在图异常检测任务上的高效性与性能优势. 展开更多
关键词 图异常检测 图神经网络 超球面学习 双通道图神经网络 无监督学习 对偶学习
下载PDF
双重预防机制建设背景下的安全风险告知研究与实践
6
作者 郑昀 桑峣 +2 位作者 李静 余新 方鑫 《安全》 2024年第6期52-57,共6页
为有效解决企业开展双重预防机制建设过程中存在的安全风险告知内容不规范、不统一、警示标识张贴无序等问题,采用对标分析及标准量化的方法,将风险四色图与现场安全风险告知要素进行集成,提出安全风险告知集成图模式;以某企业为例,开... 为有效解决企业开展双重预防机制建设过程中存在的安全风险告知内容不规范、不统一、警示标识张贴无序等问题,采用对标分析及标准量化的方法,将风险四色图与现场安全风险告知要素进行集成,提出安全风险告知集成图模式;以某企业为例,开展安全风险告知实践。结果表明:该模式规范了现场安全风险告知管理,极大提升了企业现场安全风险告知的合规性。 展开更多
关键词 双重预防机制 风险四色图 安全风险告知集成图
下载PDF
基于边增强一致性与半监督学习的谣言检测研究
7
作者 张岩珂 但志平 +1 位作者 李琳 鲁雨洁 《现代电子技术》 北大核心 2024年第17期129-135,共7页
针对现有的谣言检测方法对故意伪造的突发事件检测表现不佳的现象,同时考虑到现实中突发事件的标记数据难以获得,从而导致现有的监督学习方法性能受限,提出基于边增强一致性与半监督学习的谣言检测方法(EECS)。首先通过边增强方法提高... 针对现有的谣言检测方法对故意伪造的突发事件检测表现不佳的现象,同时考虑到现实中突发事件的标记数据难以获得,从而导致现有的监督学习方法性能受限,提出基于边增强一致性与半监督学习的谣言检测方法(EECS)。首先通过边增强方法提高数据质量,然后分离出高一致性特征与低一致性特征来深入挖掘内联关系,使用双通道图卷积网络捕获特征,依据半监督学习方法有效利用大量无标记数据增强模型的泛化性,最后采用加权的有监督交叉熵损失和无监督一致性损失优化模型。实验结果表明,在公开的Twitter15、Twitter16和Weibo数据集上,所提出的模型在30%标记样本下准确率达到87.8%、89.5%和95.0%,使用少量标记样本便可达到优异的成绩。 展开更多
关键词 谣言检测 半监督 边增强 双通道图卷积 无标记数据 一致性特征
下载PDF
基于依赖类型剪枝的双特征自适应融合网络用于方面级情感分析
8
作者 郑诚 石景伟 +1 位作者 魏素华 程嘉铭 《计算机科学》 CSCD 北大核心 2024年第3期205-213,共9页
现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法... 现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法结构。以往的研究以同样的置信度利用句法信息和语义信息,没有充分考虑它们对于确定方面词极性的贡献的不同,导致模型在相应的数据集上性能较差。为了克服这些困难,文中提出了一种基于依赖类型剪枝的双特征自适应融合网络。具体来说,该模型使用一种新型的混合方法,命名为依赖关系类型剪枝和邻接矩阵平滑,来缓解句法解析产生的噪声。此外,该模型通过双特征自适应融合模块充分考虑句子的句法信息的可用程度,以一种更灵活的方式将句法特征和语义特征结合起来用于方面级情感分析。在5个公开可用的数据集上进行广泛的实验,结果证明了该方法明显优于基线模型。 展开更多
关键词 方面级情感分析 图神经网络 依赖类型剪枝 双特征自适应融合 深度学习 自然语言处理
下载PDF
知识图谱的双注意力机制推荐方法 被引量:1
9
作者 周北京 王海荣 +1 位作者 王怡梦 马赫 《中国科技论文》 CAS 2024年第2期178-185,223,共9页
为解决知识图谱推荐方法中存在的忽略用户个人信息,或将用户和项目采用相同注意力机制,致使用户和项目的潜在语义表达不充分的问题,提出了一种知识增强的双注意力机制推荐方法。采用交叉压缩融合单元获取用户个人信息和交互历史的潜在特... 为解决知识图谱推荐方法中存在的忽略用户个人信息,或将用户和项目采用相同注意力机制,致使用户和项目的潜在语义表达不充分的问题,提出了一种知识增强的双注意力机制推荐方法。采用交叉压缩融合单元获取用户个人信息和交互历史的潜在特征,以增强用户特征表示;使用不同注意力机制关注用户和项目的重要邻居,以增强知识图谱中的结构信息和语义信息表示。为了验证方法的有效性,在MovieLens-1M、MovieLens-20M、Book-Crossing和Last. FM这4个数据集上进行实验,并与RippletNet、KGAT、CKAN等6种方法进行对比分析。结果表明,本文方法与RippletNet、KGCN、LKGR等方法相比,受试者工作特征曲线下面积(area under the receiver operator characteristic curve,AUC)性能平均提升了5.34%。 展开更多
关键词 知识图谱 推荐方法 知识增强 双注意力机制
下载PDF
基于DCGCN模型的海上风电场超短期功率预测
10
作者 黄玲玲 石孝华 +2 位作者 符杨 刘阳 应飞祥 《电力系统自动化》 EI CSCD 北大核心 2024年第15期64-72,共9页
图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于... 图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于双通道图卷积网络(DCGCN)的海上风电场超短期功率预测模型。首先,建立以理论功率曲线为基准的机组状态指标模型,定量表征机组状态变化对其发电能力的影响;其次,构建海上风电场图拓扑,建立基于风速和状态邻接矩阵的风电场各机组捕获的风速与机组状态信息的关联关系模型;最后,建立基于DCGCN的风电场超短期功率预测方法。算例结果表明,所提模型有助于提高风电场功率预测模型的训练效率和预测精度。 展开更多
关键词 超短期功率预测 图卷积网络 海上风电场 功率曲线 双通道神经网络
下载PDF
基于双分支多头注意力的场景图生成方法
11
作者 王立春 付芳玉 +2 位作者 徐凯 徐洪波 尹宝才 《北京工业大学学报》 CAS CSCD 北大核心 2024年第10期1198-1205,共8页
针对已有场景图生成模型获取上下文信息有限的问题,提出一种有效的上下文融合模块,即双分支多头注意力(dual-stream multi-head attention, DMA)模块,并将DMA分别用于物体分类阶段和关系分类阶段,基于此提出基于双分支多头注意力的场景... 针对已有场景图生成模型获取上下文信息有限的问题,提出一种有效的上下文融合模块,即双分支多头注意力(dual-stream multi-head attention, DMA)模块,并将DMA分别用于物体分类阶段和关系分类阶段,基于此提出基于双分支多头注意力的场景图生成网络(dual-stream multi-head attention-based scene graph generation network, DMA-Net)。该网络由目标检测、物体语义解析和关系语义解析3个模块组成。首先,通过目标检测模块定位图像中的物体并提取物体特征;其次,使用物体语义解析模块中的节点双分支多头注意力(object dual-stream multi-head attention, O-DMA)获取融合了节点上下文的特征,该特征经过物体语义解码器获得物体类别标签;最后,通过关系语义解析模块中的边双分支多头注意力(relationship dual-stream multi-head attention, R-DMA)输出融合了边上下文的特征,该特征经过关系语义解码器输出关系类别标签。在公开的视觉基因组(visual genome, VG)数据集上分别计算了DMA-Net针对场景图检测、场景图分类和谓词分类3个子任务的图约束召回率和无图约束召回率,并与主流的场景图生成方法进行比较。实验结果表明,所提出的方法能够充分挖掘场景中的上下文信息,基于上下文增强的特征表示有效提升了场景图生成任务的精度。 展开更多
关键词 场景图生成 上下文融合 双分支多头注意力(dual-stream multi-head attention DMA) 目标检测 物体分类 关系分类
下载PDF
基于双层解码的多轮情感对话生成模型
12
作者 罗红 陆海俊 +2 位作者 陈娟娟 慎煜杰 王丹 《计算机应用研究》 CSCD 北大核心 2024年第6期1778-1783,共6页
情感对话系统的成功取决于语言理解、情感感知和表达能力,同时面部表情和个性等也能提供帮助。然而,尽管这些信息对于多轮情感对话至关重要,但是现有系统既未能够充分利用多模态信息的优势,又忽略了上下文相关性的重要性。为了解决这个... 情感对话系统的成功取决于语言理解、情感感知和表达能力,同时面部表情和个性等也能提供帮助。然而,尽管这些信息对于多轮情感对话至关重要,但是现有系统既未能够充分利用多模态信息的优势,又忽略了上下文相关性的重要性。为了解决这个问题,提出了一种基于双层解码的多轮情感对话生成模型(MEDG-DD)。该模型利用异构的图神经网络编码器将历史对话、面部表情、情感流和说话者信息进行融合,以获得更加全面的对话上下文。然后,使用基于注意力机制的双层解码器,以生成与对话上下文相关的富含情感的言辞。实验结果表明,该模型能够有效地整合多模态信息,实现更为准确、自然且连贯的情感话语。与传统的ReCoSa模型相比,该模型在各项评估指标上均有显著的提升。 展开更多
关键词 图神经网络编码器 注意力机制 双层解码 对话生成
下载PDF
基于情感增强和语义依存的金融隐式情感分析模型
13
作者 张玉莹 朱广丽 谈光璞 《计算机工程与科学》 CSCD 北大核心 2024年第6期1112-1120,共9页
金融情感分析是一种判断金融文本的情感倾向性的技术,广泛应用于舆情分析和监管协调等方面。由于金融领域文本中包含隐式情感信息,难以根据情感特征直接判定情感极性。针对这一问题,提出一种基于情感增强和语义依存的金融隐式情感分析模... 金融情感分析是一种判断金融文本的情感倾向性的技术,广泛应用于舆情分析和监管协调等方面。由于金融领域文本中包含隐式情感信息,难以根据情感特征直接判定情感极性。针对这一问题,提出一种基于情感增强和语义依存的金融隐式情感分析模型(FSED),以期提高分类的准确率。首先,采用FinBERT生成词向量,并输入到Bi-GRU提取上下文语义信息,通过嵌入积极和消极情感词向量构建两极注意力机制,用于分别提取2种语境下的情感特征向量;然后,根据文本的语义依存图建立依存关系和关系类型矩阵,结合2种矩阵和top-k策略构建选择注意力矩阵,再输入到图卷积网络来提取文本的语义依存特征;最后,融合情感增强和语义依存的特征,并使用平均池化和最大池化层对特征进行压缩,经全连接层和Softmax获得分类结果。实验结果表明,相较于A-GCN,FSED可以提升金融领域隐式情感分析的准确率。 展开更多
关键词 金融隐式情感分析 FinBERT 两极注意力机制 语义依存图 选择注意力矩阵
下载PDF
基于双重图神经网络的计算机网络入侵检测方法
14
作者 王玮琳 《现代工业经济和信息化》 2024年第7期74-76,共3页
由于传统的计算机网络入侵检测方法通常依赖手动选择特征,这些特征无法涵盖所有的入侵行为,导致F1分数较低。针对上述问题,提出了基于双重图神经网络的计算机网络入侵检测方法。设计网络入侵检测结构,利用网络结构处理传统的时序数据;... 由于传统的计算机网络入侵检测方法通常依赖手动选择特征,这些特征无法涵盖所有的入侵行为,导致F1分数较低。针对上述问题,提出了基于双重图神经网络的计算机网络入侵检测方法。设计网络入侵检测结构,利用网络结构处理传统的时序数据;利用双重图神经网络从原始数据中提取对入侵行为敏感的特征,对时间序列进行建模,将时间序列数据转化为适合神经网络处理的形式;使用双重图神经网络进行实际入侵检测,通过不断地更新特征,检测计算机的网络入侵行为。实验结果表明,该方法的F1分数得分较高,提高了入侵检测的准确性,为计算机网络的安全提供了有力保障。 展开更多
关键词 双重图神经网络 计算机网络 入侵检测 时间序列
下载PDF
大语言模型融合知识图谱的风电运维问答系统研究
15
作者 陈庆 柳雨生 +3 位作者 段练达 梁好 孙启涛 鲁纳纳 《综合智慧能源》 CAS 2024年第9期61-68,共8页
风电场运维工作高度依赖现场实践经验,而行业内人员高流动性带来经验传递难题,传统知识库和问答系统日益暴露出其局限性。为提高问答系统在专业领域的适用性和可靠性,设计了一种融合大型语言模型和知识图谱的风电运维问答系统,通过语义... 风电场运维工作高度依赖现场实践经验,而行业内人员高流动性带来经验传递难题,传统知识库和问答系统日益暴露出其局限性。为提高问答系统在专业领域的适用性和可靠性,设计了一种融合大型语言模型和知识图谱的风电运维问答系统,通过语义理解和关联性分析,整合结构化与非结构化数据,提供全面、准确的专业回答。主、客观评价表明,该专业问答模型的准确性、连贯性及信息量均优于某中文大语言模型及ChatGLM模型,不仅提升了风电运维的效率,也为行业知识传承和更新提供了解决方案。 展开更多
关键词 风电运维 大语言模型 知识图谱 双基座问答系统 ChatGLM模型
下载PDF
BERT和LSI的端到端方面级情感分析模型
16
作者 代佳梅 孔韦韦 +1 位作者 王泽 李佩哲 《计算机工程与应用》 CSCD 北大核心 2024年第12期144-152,共9页
针对现有基于端到端方面的情感分析(E2E-ABSA)方法研究中没有充分利用文本信息的不足,提出了一种基于BERT与融合词性、句法信息(lexical and syntactic information,LSI)的模型LSI-BERT。使用BERT嵌入层和TFM特征提取器来提取语义信息,... 针对现有基于端到端方面的情感分析(E2E-ABSA)方法研究中没有充分利用文本信息的不足,提出了一种基于BERT与融合词性、句法信息(lexical and syntactic information,LSI)的模型LSI-BERT。使用BERT嵌入层和TFM特征提取器来提取语义信息,并通过工业级自然语言处理工具SpaCy提取词性信息,引入两个权重因子α和β对语义与词性信息进行融合;采用图注意网络(graph attention networks,GAT)根据句法依存树生成的邻接矩阵进行句法依存信息的提取;利用双流注意力网络针对句法依存信息和融合了词性信息的文本信息进行融合,使这两种信息实现更好的交互。实验结果表明,模型在三个常用基准数据集上的性能优于当前代表模型。 展开更多
关键词 端到端 基于方面的情感分析 图注意网络 权重因子 双流注意力网络
下载PDF
基于语义与全局双重注意力机制的长链非编码RNA-疾病关联预测模型 被引量:1
17
作者 张奕 蔡钢生 王真梅 《计算机应用》 CSCD 北大核心 2023年第7期2125-2132,共8页
针对现有长链非编码RNA(lncRNA)-疾病关联预测模型在综合利用异构生物网络的交互、语义信息上存在局限性的问题,提出一种基于语义与全局双重注意力机制的lncRNA-疾病关联预测模型(SGALDA)。首先,基于相似性和已知关联构建一个lncRNA-疾... 针对现有长链非编码RNA(lncRNA)-疾病关联预测模型在综合利用异构生物网络的交互、语义信息上存在局限性的问题,提出一种基于语义与全局双重注意力机制的lncRNA-疾病关联预测模型(SGALDA)。首先,基于相似性和已知关联构建一个lncRNA-疾病-微小RNA(miRNA)异构网络,并基于消息传递类型设计特征提取模块来提取和融合异构网络上同质、异质节点的邻域特征,以捕捉异构网络上的多层面交互关系。其次,基于元路径将异构网络分解为多个语义子网络,并分别在各个子网络上应用图卷积网络(GCN)来提取节点的语义特征,以捕捉异构网络上的高阶交互关系。然后,基于语义与全局双重注意力机制融合节点的语义和邻域特征,以获得更具代表性的节点特征。最后,利用lncRNA节点特征和疾病节点特征的内积运算重建lncRNA-疾病关联。5折交叉验证结果显示,SGALDA的受试者工作特征曲线下面积(AUROC)为0.9945±0.0002,PR曲线下面积(AUPR)为0.9167±0.0011,在所有对比模型中均为最高,验证了SGALDA良好的预测性能。对乳腺癌、胃癌的案例研究进一步证实了SGALDA识别潜在lncRNA-疾病关联的能力,说明SGALDA有潜力成为一种可靠的lncRNA-疾病关联预测模型。 展开更多
关键词 关联预测 异构网络 元路径 双重注意力 图卷积网络 长链非编码RNA
下载PDF
基于注意力与双通道网络的方面级情感分析 被引量:3
18
作者 杨春霞 徐奔 +1 位作者 桂强 韩煜 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第1期42-50,共9页
针对方面级情感分析任务不能充分兼顾句法全面性与语义关联性,且大多数研究中使用的图卷积仅考虑信息自上而下的传播,忽略了信息自下而上的聚合等问题,本文提出了基于注意力与双通道网络的情感分析模型.该模型在扩展依存表示的同时使用... 针对方面级情感分析任务不能充分兼顾句法全面性与语义关联性,且大多数研究中使用的图卷积仅考虑信息自上而下的传播,忽略了信息自下而上的聚合等问题,本文提出了基于注意力与双通道网络的情感分析模型.该模型在扩展依存表示的同时使用自注意力获取具有语义关联的信息矩阵,使用双通道网络结合全局句法与语义关联信息,双通道网络分别侧重于自上而下传播的语义特征与自下而上聚合的结构特征.通道内的图卷积输出会与信息矩阵进行交互注意力起到残差互补的作用,然后通过平均池化完成通道内的任务.最后将基于语义与基于结构的决策融合得到最终的情感分类特征.实验结果表明该模型在三个公开数据集上的准确率与F1值均有提升. 展开更多
关键词 注意力机制 双通道网络 决策融合 图卷积
下载PDF
双网络中影响力凝聚子图发现算法
19
作者 李源 杨森 +2 位作者 孙晶 赵会群 王国仁 《计算机研究与发展》 EI CSCD 北大核心 2023年第9期2096-2114,共19页
双网络由物理图和概念图构成,其中物理图和概念图共享网络结点集合而具有不同边集合.物理图中边表示结点间实际存在的关系;概念图中边表示结点间的相似程度,通常由计算得出.最近,从双网络中发现凝聚子图,即物理图中连通且概念图中稠密... 双网络由物理图和概念图构成,其中物理图和概念图共享网络结点集合而具有不同边集合.物理图中边表示结点间实际存在的关系;概念图中边表示结点间的相似程度,通常由计算得出.最近,从双网络中发现凝聚子图,即物理图中连通且概念图中稠密的子图受到研究者的广泛关注,在研讨会筹备、商品推荐和致病基因发现等真实场景中具有广泛应用.但现有研究鲜有考虑双网络中凝聚子图的影响力.为此:1)提出一种基于最小边权重定义的影响力凝聚子图,即影响力k-连通truss(k-ICT)子图模型.k-ICT子图模型能够有效刻画子图在双网络中的重要性且对低影响力边鲁棒.2)由证明可知,发现影响力最大的k-ICT子图是NP-难的,因此提出一种基于概念图边等价类划分的CT索引结构.利用索引的概要图,能够根据不同的k值,快速发现包含所有k-ICT子图的候选子图.3)提出了基于全局枚举删除和局部子图扩展的精确算法Exact-G kICT和Exact-LkICT,用于发现top-r具有最大影响力的k-ICT子图.通过大量在真实数据集上的实验,验证算法的高效性和有效性. 展开更多
关键词 影响力凝聚子图发现 影响力k-连通truss子图模型 CT索引 双网络 图数据挖掘
下载PDF
部分对偶多项式:从带子图到delta-拟阵
20
作者 金贤安 颜棋 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期971-978,共8页
图的曲面嵌入是拓扑图论的一个主要研究内容,而几何对偶是拓扑图论中非常普遍且重要的概念.带子图是胞腔嵌入图的一种几何表示,可通过它引入部分对偶,即比几何对偶更加广泛的概念.部分对偶进一步被推广到部分twuality,它在多个领域均有... 图的曲面嵌入是拓扑图论的一个主要研究内容,而几何对偶是拓扑图论中非常普遍且重要的概念.带子图是胞腔嵌入图的一种几何表示,可通过它引入部分对偶,即比几何对偶更加广泛的概念.部分对偶进一步被推广到部分twuality,它在多个领域均有广泛的应用,特别是拓扑和代数图论、拟阵论、拓扑学和物理学等.2020年,Gross等提出了带子图部分对偶欧拉亏格多项式,讨论了该多项式的基本性质并提出了若干问题和猜想.本文介绍本团队近几年在部分对偶欧拉亏格多项式方面的研究进展,包括推广这类多项式的概念和部分性质至delta-拟阵. 展开更多
关键词 带子图 部分对偶 扭曲对偶 多项式 delta-拟阵
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部