期刊文献+
共找到2,338篇文章
< 1 2 117 >
每页显示 20 50 100
Damage Mechanism of Ultra-thin Asphalt Overlay(UTAO) based on Discrete Element Method
1
作者 杜晓博 GAO Liang +4 位作者 RAO Faqiang 林宏伟 ZHANG Hongchao SUN Mutian XU Xiuchen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期473-486,共14页
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou... Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force. 展开更多
关键词 ultra-thin asphalt overlay pavement distress discrete element method meso-mechanics damage mechanism
下载PDF
Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ
2
作者 Weiliang Gao Shixu Jia +1 位作者 Tingting Zhao Zhiyong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3495-3511,共17页
The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element metho... The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure. 展开更多
关键词 Discrete element method damage evolution interfacial transition zone meso-structure model
下载PDF
Stress-corrosion coupled damage localization induced by secondary phases in bio-degradable Mg alloys:phase-field modeling
3
作者 Chao Xie Shijie Bai +2 位作者 Xiao Liu Minghua Zhang Jianke Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期361-383,共23页
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the... In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale. 展开更多
关键词 Phase field Mg alloys Stress-corrosion coupled damage damage localization Finite element method
下载PDF
A Compensation Algorithm for Large Element Characterizing the Damage Evolution Process and Its Application to Structure Collisions
4
作者 Wen Liu Lele Zhang +2 位作者 Yifan Ru Geng Chen Weiyuan Dou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期315-331,共17页
When simulating the process from elastic–plastic deformation,damage to failure in a metal structure collision,it is necessary to use the large shell element due to the calculation efficiency,but this would affect the... When simulating the process from elastic–plastic deformation,damage to failure in a metal structure collision,it is necessary to use the large shell element due to the calculation efficiency,but this would affect the accuracy of damage evolution simulation.The compensation algorithm adjusting failure strain according to element size is usually used in the damage model to deal with the problem.In this paper,a new nonlinear compensation algorithm between failure strain and element size was proposed,which was incorporated in the damage model GISSMO(Generalized incremental stress state dependent damage model)to characterize ductile fracture.And associated material parameters were calibrated based on tensile experiments of aluminum alloy specimens with notches.Simulation and experimental results show that the new compensation algorithm significantly reduces the dependence of element size compared with the constant failure strain model and the damage model with the linear compensation algorithm.During the axial splitting process of a circular tubular structure,the new compensation algorithm keeps the failure prediction errors low over the stress states ranging from shear to biaxial tension,and achieves the objective prediction of the damage evolution process.This study demonstrates how the compensation algorithm resolves the contradiction between large element size and fracture prediction accuracy,and this facilitates the use of the damage model in ductile fracture prediction for engineering structures. 展开更多
关键词 Compensation algorithm element size damage model Axial splitting
下载PDF
A Modified Model for Soil–Structure Interface Considering Random Damage of Mesoscopic Contact Elements
5
作者 KE Li-jun GAO Yu-feng +2 位作者 ZHAO Zi-hao LI Da-yong JI Jian 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期807-818,共12页
The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ... The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces. 展开更多
关键词 soil–structure interface statistical damage model mesoscopic element Weibull function “semi-softening”characteristic point
下载PDF
Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading 被引量:2
6
作者 S.M.Anas Mehtab Alam Mohd Shariq 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期12-34,共23页
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac... Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section. 展开更多
关键词 RC slabs Impact loading Eccentric impacts Concrete models Finite element analysis damage profiles Stresses Peak acceleration Failure modes damage dissipation energy CRACKING Drop-weight locations
下载PDF
Ballistic penetration damages of hybrid plain-woven laminates with carbon,Kevlar and UHMWPE fibers in different stacking sequences 被引量:1
7
作者 Zhi-yong Li You-song Xue +1 位作者 Bao-zhong Sun Bo-hong Gu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期23-38,共16页
Hybrid composite materials combine different fibers in preform and take advantages of different mechanical behaviors for improving ballistic impact damage tolerances.Here we report ballistic impact damages of plain-wo... Hybrid composite materials combine different fibers in preform and take advantages of different mechanical behaviors for improving ballistic impact damage tolerances.Here we report ballistic impact damages of plain-woven laminates with different hybrids and stacking sequences.Three kinds of hybrid laminates,i.e.,carbon/Kevlar,carbon/ultra-high molecular weight polyethylene(UHMWPE),and UHMWPE/Kevlar,had been prepared and tested in ballistic penetration with fragment simulating projectiles(FSP).The residual velocities of the projectiles and impact damage morphologies of the laminates have been obtained to show impact energy absorptions for the different hybrid schemes.A microstructural model of the hybrid laminates had also been established to show impact damage mechanisms with finite element analysis(FEA).We found that the UHMWPE/Kevlar hybrid laminates with Kevlar layers as the front face have the highest energy absorption capacity,followed by the carbon/Kevlar hybrid laminates with carbon layers as the front face.The main damage modes are fiber breakages,matrix crack and interlayer delamination.The ballistic damage evolutions from the FEA results show that the major damage is shear failure for front layers,while tension failure for the back layers.We expect that the ballistic impact performance could be improved from the different hybrid schemes. 展开更多
关键词 Hybrid laminates Ballistic impact damages Energy absorption Finite element analysis(FEA)
下载PDF
Assessing fracturing mechanisms and evolution of excavation damaged zone of tunnels in interlocked rock masses at high stresses using a finitediscrete element approach 被引量:10
8
作者 I.Vazaios N.Vlachopoulos M.S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期701-722,共22页
Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-ex... Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method (FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory (URL) Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks (DFNs) of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation. 展开更多
关键词 EXCAVATION damaged zone (EDZ) BRITTLE failure Finite-discrete element method (FDEM) TUNNELLING DISCRETE fracture network (DFN)
下载PDF
Stiffness degradation-based damage model for RC members and structures using fiber-beam elements 被引量:1
9
作者 Guo Zongming Zhang Yaoting +1 位作者 Lu Jiezhi Fan Jian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期697-714,共18页
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforce... To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading. 展开更多
关键词 fiber beam-column element stiffness degradation damage index reinforced concrete column reinforced concrete frame
下载PDF
Analysis of Temperature Rise Characteristics and Fatigue Damage Degree of ACSR Broken Strand
10
作者 Jun Zhang Xiaobin Li +4 位作者 Long Zhao Zixin Li Shuo Wang Pan Yao Pengfei Dai 《Energy Engineering》 EI 2023年第3期617-631,共15页
In this paper,the research on ACSR temperature of broken strand and fatigue damage after broken strand is carried out.Conduct modeling and Analysis on the conductor through AnsoftMaxwell software.The distribution of m... In this paper,the research on ACSR temperature of broken strand and fatigue damage after broken strand is carried out.Conduct modeling and Analysis on the conductor through AnsoftMaxwell software.The distribution of magnetic force lines in the cross section of the conductor after strand breaking and the temperature change law of the conductor with the number of broken strands are analyzed.A model based on electromagnetic theory is established to analyze the distribution of magnetic lines of force in the cross section of the conductor after strand breaking and the temperature variation law of the conductor with the number of broken strands.The finite element analysis results show that with the increase in the number of broken strands,the cross-sectional area of the conductor decreases,the magnetic line of force of the inner conductor at the broken strand becomes denser and denser,and the electromagnetic loss of the conductor becomes larger and larger.Therefore,the temperature of the conductor at the broken strand becomes higher and higher.Then,the current carrying experiment of conductor is carried out for LGJ-240/30 conductor.It is found that the temperature rise at the junction of inner and outer layers at the broken strand is particularly obvious,and the temperature of inner aluminumconductor at the broken strand also increases with the increase of broken strand.According to the analysis of experimental data,with the increase of broken strands,the antivibration ability and service life of the conductor decrease.At the same time,under certain conditions of broken strand,the fatigue life of conductor increases with the increase of temperature. 展开更多
关键词 Steady-state temperature fatigue damage electromagnetic finite element magnetic line of force electromagnetic loss
下载PDF
PREDICTION FOR FORMING LIMIT OF AL2024T3 SHEET BASED ON DAMAGE THEORY USING FINITE ELEMENT METHOD 被引量:1
11
作者 Tang C.Y. Fan Jianping Tsui C.P. 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期174-180,共7页
This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite ... This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite element cell model has been constructed. The cell model consists of two phases, the aluminum alloy matrix and the intermetallic cluster. The material behavior of the aluminum alloy matrix is described with a fully coupled elasto-plastic damage constitutive equation. The intermetallic cluster is assumed to be elastic and brittle. By varying the stretching ratio, the limiting strains of the sheet under biaxial stretching have been predicted by using the necking criterion proposed. The prediction is in good agreement with the experimental findings. Moreover, the finite element cell model can provide information for understanding the microscopic damage mechanism of the aluminum alloy. Over-estimation of the limit strains may result if the effect of material damage is ignored in the sheet metal forming study. 展开更多
关键词 forming limit diagram (FLD) anisotropic damage finite element method (FEM) limit strain localized necking elasto-plastic deformation
下载PDF
Vehicle-Bridge Interaction Simulation and Damage Identification of a Bridge Using Responses Measured in a Passing Vehicle by Empirical Mode Decomposition Method
12
作者 Shohel Rana Md. Rifat Zaman +2 位作者 Md. Ibrahim Islam Ifty Seyedali Mirmotalebi Tahsin Tareque 《Open Journal of Civil Engineering》 2023年第4期742-755,共14页
To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic character... To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic characteristics as it degrades. By measuring the vibration response of a bridge due to passing vehicles, this approach can identify potential structural damage. This dissertation introduces a novel technique grounded in Vehicle-Bridge Interaction (VBI) to evaluate bridge health. It aims to detect damage by analyzing the response of passing vehicles, taking into account VBI. The theoretical foundation of this method begins with representing the bridge’s superstructure using a Finite Element Model and employing a half-car dynamic model to simulate the vehicle with suspension. Two sets of motion equations, one for the bridge and one for the vehicle are generated using the Finite Element Method, mode superposition, and D’Alembert’s principle. The combined dynamics are solved using the Newmark-beta method, accounting for road surface roughness. A new approach for damage identification based on the response of passing vehicles is proposed. The response is theoretically composed of vehicle frequency, bridge natural frequency, and a pseudo-frequency component related to vehicle speed. The Empirical Mode Decomposition (EMD) method is applied to decompose the signal into its constituent parts, and damage detection relies on the Intrinsic Mode Functions (IMFs) corresponding to the vehicle speed component. This technique effectively identifies various damage scenarios considered in the study. 展开更多
关键词 Structural Health Monitoring Vibration-Based damage Identification Vehicle-Bridge Interaction Finite element Model Empirical Mode Decomposition
下载PDF
FINITE ELEMENT ANALYSIS ON EVOLUTION PROCESS FOR DAMAGE MICROCRACK HEALING
13
作者 黄佩珍 李中华 孙军 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第3期254-263,共10页
Based on the thermal kinetic and mass conservation, a series of controlling equations for the finite element are derived and related programs are developed to simulate the damage microcrack healing process controlled ... Based on the thermal kinetic and mass conservation, a series of controlling equations for the finite element are derived and related programs are developed to simulate the damage microcrack healing process controlled by surface diffusion. Two kinds of typical models for microcrack splitting are proposed, i.e., the grain boundary energy existing on the crack surface and residual stresses applying on the crack surface. And the conditions of microcrack splitting in the two models are given as a function of the microcrack aspect ratio. The microcrack with traction-free surfaces will directly evolve into a spheroid. 展开更多
关键词 MICROCRACK damage healing microcrack splitting and spheroidization surface diffusion finite element method
下载PDF
Numerical simulation of strain localization and damage evolution in large plastic deformation using mixed finite element method
14
作者 Zhanghua Chen Jiajian Jin Jiumei Xiao Applied Science School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2004年第3期273-277,共5页
An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coup... An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coupling finite element program that is developed based onthe concept of mixed interpolation of displacement/pressure. This program has been incorporated intoa damage mechanics model as well as the corresponding damage criterion. To illustrate theperformance of the proposed approach, a typical strain localization problem has been simulated. Theresults show that the proposed approach is of good capability to capture strain localization andpredict the damage evolution. 展开更多
关键词 strain localization mixed element truesdell stress rate material damage
下载PDF
Research in the Development of Finite Element Software for Creep Damage Analysis
15
作者 Dezheng Liu Qiang Xu +1 位作者 Zhongyu Lu Donglai Xu 《通讯和计算机(中英文版)》 2013年第8期1019-1030,共12页
关键词 有限元软件 损伤分析 软件开发 蠕变 可持续发展 高温结构 损伤变形 平面应力
下载PDF
Dynamic Detection of Reinforced Concrete Bridge Damage by Finite Element Model Updating
16
《Journal of Mechanics Engineering and Automation》 2014年第1期40-45,共6页
关键词 有限元模型修正 钢筋混凝土桥梁 桥梁损伤 动态检测 模型修正法 阿尔及利亚 测试数据 测试技术
下载PDF
Aero-engine Blade Fatigue Analysis Based on Nonlinear Continuum Damage Model Using Neural Networks 被引量:13
17
作者 LIN Jiewei ZHANG Junhong +2 位作者 ZHANG Guichang NI Guangjian BI Fengrong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期338-345,共8页
Fatigue life and reliability of aero-engine blade are always of important significance to flight safety.The establishment of damage model is one of the key factors in blade fatigue research.Conventional linear Miner'... Fatigue life and reliability of aero-engine blade are always of important significance to flight safety.The establishment of damage model is one of the key factors in blade fatigue research.Conventional linear Miner's sum method is not suitable for aero-engine because of its low accuracy.A back propagation neutral network(BPNN) based on the combination of Levenberg-Marquardt(LM) and finite element method(FEM) is used to describe process of nonlinear damage accumulation behavior in material and predict fatigue life of the blade.Fatigue tests of standard specimen made from TC4 are carried out to obtain material fatigue parameters and S-N curve.A nonlinear continuum damage model(CDM),based on the BPNN with one hidden layer and ten neurons,is built to investigate the nonlinear damage accumulation behavior,in which the results from the tests are used as training set.Comparing with linear models and previous nonlinear models,BPNN has the lowest calculation error in full load range.It has significant accuracy when the load is below 500 MPa.Especially,when the load is 350 MPa,the calculation error of the BPNN is only 0.4%.The accurate model of the blade is built by using 3D coordinate measurement technology.The loading cycle in fatigue analysis is defined from takeoff to cruise in 10 min,and the load history is obtained from finite element analysis(FEA).Then the fatigue life of the compressor blade is predicted by using the BPNN model.The final fatigue life of the aero-engine blade is 6.55 104 cycles(10 916 h) based on the BPNN model,which is effective for the virtual design of aero-engine blade. 展开更多
关键词 continuum damage model neutral network Finite element Method aero-engine blade life prediction
下载PDF
Modeling and simulation of bullet-barrel interaction process for the damaged gun barrel 被引量:9
18
作者 Chao Shen Ke-dong Zhou +1 位作者 Ye Lu Jun-song Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期972-986,共15页
In this paper,the influences of bore damage on the bullet-barrel interaction process and the mechanism of how bore damage results in the end of a machine gun barrel’s service life were studied,which had seldom been p... In this paper,the influences of bore damage on the bullet-barrel interaction process and the mechanism of how bore damage results in the end of a machine gun barrel’s service life were studied,which had seldom been paid attention to in the past several decades.A novel finite element mesh generation method for the damaged barrel and a new transient coupled thermo-mechanical finite element(FE)model,which were based on the damage data obtained through barrel life tests,were developed to simulate the interior ballistics process of a coupled bullet-barrel system.Additionally,user subroutine VUAMP was developed in the FE model in order to take the bullet base pressure brought by propellant gas into account.Good consistency between the simulation results and the experimental results verified the preciseness of the proposed mesh generation method and the FE model.The simulation results show that the increase of bullet’s initial disturbance at the muzzle and the variation of its surface morphology caused by bore damage are primarily responsible for the life end of this 12.7 mm machine gun barrel. 展开更多
关键词 Barrel life tests Real bore damage Interior ballistics performance Initial disturbance Finite element method
下载PDF
ANALYSIS OF DAMAGE NEAR A CONDUCTING CRACK IN A PIEZOELECTRIC CERAMIC 被引量:6
19
作者 YangXinhua ChenChuanyao HuYuantai 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第2期147-154,共8页
The finite element formulation for analyzing static damage near a conducting crack in a thin piezoelectric plate is established from the virtual work principle of piezoelectricity.The damage fields under various mecha... The finite element formulation for analyzing static damage near a conducting crack in a thin piezoelectric plate is established from the virtual work principle of piezoelectricity.The damage fields under various mechanical and electrical loads are calculated carefully by using an effective iterative procedure.The numerical results show that all the damage fields around a crack tip are fan-shaped and the electric field applied has great influence on the mechanical damage, which is related to the piezoelectric properties. 展开更多
关键词 piezoelectric ceramic nonlinear finite element method conducting crack mechanical and electrical damage
下载PDF
Revised damage evolution equation for high cycle fatigue life prediction of aluminum alloy LC4 under uniaxial loading 被引量:3
20
作者 Zhixin ZHAN Weiping HU +1 位作者 Miao ZHANG Qingchun MENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第9期1185-1196,共12页
The fatigue life prediction for components is a difficult task since many factors can affect the final fatigue life. Based on the damage evolution equation of Lemaitre and Desmorat, a revised two-scale damage evolutio... The fatigue life prediction for components is a difficult task since many factors can affect the final fatigue life. Based on the damage evolution equation of Lemaitre and Desmorat, a revised two-scale damage evolution equation for high cycle fatigue is presented according to the experimental data, in which factors such as the stress amplitude and mean stress are taken into account. Then, a method is proposed to obtain the material parameters of the revised equation from the present fatigue experimental data. Finally, with the utilization of the ANSYS parametric design language (APDL) on the ANSYS platform, the coupling effect between the fatigue damage of materials and the stress distribution in structures is taken into account, and the fatigue life of specimens is predicted. The outcome shows that the numerical prediction is in accord with the experimental results, indicating that the revised two-scale damage evolution model can be well applied for the high cycle fatigue life prediction under uniaxial loading. 展开更多
关键词 fatigue damage model continuum damage mechanics fatigue life highcycle fatigue finite element method
下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部