期刊文献+
共找到5,040篇文章
< 1 2 250 >
每页显示 20 50 100
An Aerial Target Recognition Algorithm Based on Self-Attention and LSTM
1
作者 Futai Liang Xin Chen +2 位作者 Song He Zihao Song Hao Lu 《Computers, Materials & Continua》 SCIE EI 2024年第10期1101-1121,共21页
In the application of aerial target recognition,on the one hand,the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise.On the other hand,it is difficult t... In the application of aerial target recognition,on the one hand,the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise.On the other hand,it is difficult to apply machine learning methods to improve the intelligence and recognition effect due to few or no actual measurement samples.Aiming at these problems,an aerial target recognition algorithm based on self-attention and Long Short-Term Memory Network(LSTM)is proposed.LSTM can effectively extract temporal dependencies.The attention mechanism calculates the weight of each input element and applies the weight to the hidden state of the LSTM,thereby adjusting the LSTM’s attention to the input.This combination retains the learning ability of LSTM and introduces the advantages of the attention mechanism,making the model have stronger feature extraction ability and adaptability when processing sequence data.In addition,based on the prior information of the multidimensional characteristics of the target,the three-point estimation method is adopted to simulate an aerial target recognition dataset to train the recognition model.The experimental results show that the proposed algorithm achieves more than 91%recognition accuracy,lower false alarm rate and higher robustness compared with the multi-attribute decision-making(MADM)based on fuzzy numbers. 展开更多
关键词 Aerial target recognition long short-term memory network self-attention three-point estimation
下载PDF
KGTLIR:An Air Target Intention Recognition Model Based on Knowledge Graph and Deep Learning
2
作者 Bo Cao Qinghua Xing +2 位作者 Longyue Li Huaixi Xing Zhanfu Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1251-1275,共25页
As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in ... As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness. 展开更多
关键词 Dilated causal convolution graph attention mechanism intention recognition air targets knowledge graph
下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
3
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
下载PDF
A Multi Moving Target Recognition Algorithm Based on Remote Sensing Video
4
作者 Huanhuan Zheng Yuxiu Bai Yurun Tian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期585-597,共13页
The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from ... The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement. 展开更多
关键词 Deep learning remote sensing images moving target recognition salient
下载PDF
Underwater Noise Target Recognition Based on Sparse Adversarial Co-Training Model with Vertical Line Array
5
作者 ZHOU Xingyue YANG Kunde +2 位作者 YAN Yonghong LI Zipeng DUAN Shunli 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1201-1215,共15页
The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driv... The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion. 展开更多
关键词 underwater acoustic target recognition marine acoustic signal processing sound field feature extraction sparse adversarial network
下载PDF
Air target recognition method against ISRJ for radio frequency proximity sensors using chaotic stream encryption
6
作者 Jian-feng Li Jian Dai +2 位作者 Xin-hong Hao Xiao-peng Yan Xin-wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期267-279,共13页
The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article propose... The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs). 展开更多
关键词 Interrupted-sampling repeater jamming(ISRJ) Radio frequency proximity sensors(RFPS) Chaotic stream encryption Air target recognition Identity(ID)decryption
下载PDF
A model of targeted advertising with customer recognition 被引量:4
7
作者 张建强 仲伟俊 梅姝娥 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期490-495,共6页
A two-period duopoly model is developed to examine the competitive effects of targeted advertising with customer recognition (TACR). In the model, two competing firms sell goods to end consumers in the first period,... A two-period duopoly model is developed to examine the competitive effects of targeted advertising with customer recognition (TACR). In the model, two competing firms sell goods to end consumers in the first period, during which customer recognition is obtained. In the second period, advertising can be targeted toward different consumer types. Advertising is assumed to be persuasive in the way that consumer valuation is increased. Equilibrium decisions and profits in each period are derived, showing that the firm who loses the current competition will win in the future. As a result, forward-looking firms price less aggressively so that their long-term profits can be enhanced with the help of TACR. Particularly, TACR improves profits through three important effects: valuation increasing, customer poaching, and anti-competition. Finally, this paper investigates the welfare issues, showing that firms enhance profits at the expense of consumer surplus. It is, therefore, suggested that public sectors take a step to protect consumers with the rapid development of targeting technology. 展开更多
关键词 targeted advertising customer recognition price discrimination purchase history
下载PDF
New Algorithm for Image Target Recognition Based on Fractal Feature Fusion 被引量:2
8
作者 潘秀琴 侯朝桢 苏利敏 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期342-345,共4页
By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com... By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid. 展开更多
关键词 FRACTAL feature fusion target recognition
下载PDF
And Gate Recognition System for Short Range Targets 被引量:1
9
作者 王军波 周忠来 施聚生 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期54-60,共7页
Being aimed at the weakness of short range target′s threshold value recognition system,the double passage And Gate recognition system was put forward on the correlativity of target signals and randomness of noise ... Being aimed at the weakness of short range target′s threshold value recognition system,the double passage And Gate recognition system was put forward on the correlativity of target signals and randomness of noise signals Through state analysis and inference of state transition probability,both the reliability and early burst probability of the system were obtained in theory 展开更多
关键词 signal recognition RELIABILITY target detector
下载PDF
OPTIMIZATION OF WEIGHTED HIGH-RESOLUTION RANGE PROFILE FOR RADAR TARGET RECOGNITION 被引量:1
10
作者 朱劼昊 周建江 吴杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期157-162,共6页
For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize th... For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy. 展开更多
关键词 radar target recognition high-resolution range profile scattering center model gradient descentmethod
下载PDF
YOLOv5-Based Seabed Sediment Recognition Method for Side-Scan Sonar Imagery 被引量:1
11
作者 WANG Ziwei HU Yi +1 位作者 DING Jianxiang SHI Peng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1529-1540,共12页
Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides ... Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery. 展开更多
关键词 seabed sediment real-time target recognition YOLOv5 model side-scan sonar imagery transfer learning
下载PDF
Target recognition based on modified combination rule 被引量:16
12
作者 Chen Tianlu Que Peiwen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期279-283,共5页
Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rul... Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly. 展开更多
关键词 evidence theory combination rule conflict evidences target recognition data fusion.
下载PDF
HRRP target recognition based on kernel joint discriminant analysis 被引量:8
13
作者 LIU Wenbo YUAN Jiawen +1 位作者 ZHANG Gong SHEN Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期703-708,共6页
With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on ... With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance. 展开更多
关键词 high RESOLUTION range profile(HRRP) target recognition small SAMPLE problem FEATURE extraction DIMENSION reduction
下载PDF
Research on PCA and KPCA Self-Fusion Based MSTAR SAR Automatic Target Recognition Algorithm 被引量:6
14
作者 Chuang Lin Fei Peng +2 位作者 Bing-Hui Wang Wei-Feng Sun Xiang-Jie Kong 《Journal of Electronic Science and Technology》 CAS 2012年第4期352-357,共6页
This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear featu... This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms. 展开更多
关键词 Automatic target recognition principal component analysis self-fusion syntheticaperture radar.
下载PDF
ia-PNCC: Noise Processing Method for Underwater Target Recognition Convolutional Neural Network 被引量:4
15
作者 Nianbin Wang Ming He +4 位作者 Jianguo Sun Hongbin Wang Lianke Zhou Ci Chu Lei Chen 《Computers, Materials & Continua》 SCIE EI 2019年第1期169-181,共13页
Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic i... Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic in the field of underwater acoustic signals.In this paper,the deep learning model is applied to underwater target recognition.Improved anti-noise Power-Normalized Cepstral Coefficients(ia-PNCC)is proposed,based on PNCC applied to underwater noises.Multitaper and normalized Gammatone filter banks are applied to improve the anti-noise capacity.The method is combined with a convolutional neural network in order to recognize the underwater target.Experiment results show that the acoustic feature presented by ia-PNCC has lower noise and are wellsuited to underwater target recognition using a convolutional neural network.Compared with the combination of convolutional neural network with single acoustic feature,such as MFCC(Mel-scale Frequency Cepstral Coefficients)or LPCC(Linear Prediction Cepstral Coefficients),the combination of the ia-PNCC with a convolutional neural network offers better accuracy for underwater target recognition. 展开更多
关键词 Noise PROCESSING UNDERWATER target recognition convolutional NEURAL network
下载PDF
Bark-Wavelet Analysis and Hilbert -Huang Transform for Underwater Target Recognition 被引量:2
16
作者 ZENG Xiangyang WANG Shuguang 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期145-151,共7页
Recognizing the underwater targets by the radiated noise information is one of the most significant subjects in the area of underwater acoustics. Based on the theory of auditory perception, a novel recognition approac... Recognizing the underwater targets by the radiated noise information is one of the most significant subjects in the area of underwater acoustics. Based on the theory of auditory perception, a novel recognition approach which consists of the algorithms of Bark-wavelet analysis, Hilbert-Huang transform and support vector machine is proposed. The performance of the proposed method is validated by comparing with traditional method and evaluated by the recognition experiments for SNRs of 0 dB, 5 dB, 10 dB, 15 dB and 20 dB.The results show that the average recognition rate of the method is above 88% and can be increased by 0.75 % to 6.25% under various SNR conditions compared to the baseline system. 展开更多
关键词 ACOUSTICS underwater target recognition Bark-wavelet Hilbert-Huang transform
下载PDF
Spin-image surface matching based target recognition in laser radar range imagery 被引量:2
17
作者 王丽 孙剑峰 王骐 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期281-288,共8页
We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the ran... We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the range imagery of Ladar is time-consuming, owing to its complicated procedure, which violates the requirement of real-time target recognition in practical applications. To simplify the troublesome procedures, we improve the spin-image algorithm by introducing a statistical correlated coeff^cient into target recognition in range imagery of Ladar. The system performance is demonstrated on sixteen simulated noise range images with targets rotated through an arbitrary angle in plane. A high efficiency and an acceptable recognition rate obtained herein testify the validity of the improved algorithm for practical applications. The proposed algorithm not only solves the problem of in-plane rotation-invariance rationally, but also meets the real-time requirement. This paper ends with a comparison of the proposed method and the previous one. 展开更多
关键词 Ladar automatic target recognition spin-image statistical correlation coefficient
下载PDF
Radar group target recognition based on HRRPs and weighted mean shift clustering 被引量:7
18
作者 GUO Pengcheng LIU Zheng WANG Jingjing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1152-1159,共8页
When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performanc... When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performance of the radar.In this paper,we propose a group target recognition method based on a weighted mean shift(weighted-MS)clustering method.During the training phase,subtarget features are extracted based on the template database,which is established through simulation or data acquisition,and the features are fed to the support vector machine(SVM)classifier to obtain the classifier parameters.In the test phase,the weighted-MS algorithm is exploited to extract the HRRP of each subtarget.Then,the features of the subtarget HRRP are extracted and used as input in the SVM classifier to be recognized.Compared to the traditional group target recognition method,the proposed method has the advantages of requiring only a small amount of computation,setting parameters automatically,and having no requirement for target motion.The experimental results based on the measured data show that the method proposed in this paper has better recognition performance and is more robust against noise than other recognition methods. 展开更多
关键词 CLUSTERING group target recognition high resolution range profile(HRRP) mean shift(MS)
下载PDF
Tactical intention recognition of aerial target based on XGBoost decision tree 被引量:9
19
作者 WANG Lei LI Shi-zhong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期148-152,共5页
In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculat... In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention.Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination.To verify the accuracy of recognition results,we compare the experimental results of this paper with the results in the literatures.The experiment shows that the probability of tactical intention recognition through this method is improved,so this method is feasible. 展开更多
关键词 tactical intention recognition of target XGBoost(eXtreme Gradient Boosting)decision tree Dempster-Shafer combination rule
下载PDF
Novel and Comprehensive Approach for the Feature Extraction and Recognition Method Based on ISAR Images of Ship Target 被引量:1
20
作者 Yong Wang Pengkai Zhu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第5期12-19,共8页
This paper proposes a novel and comprehensive method of automatic target recognition based on real ISAR images with the aim to recognize the non-cooperative ship targets. The special characteristics of the ISAR images... This paper proposes a novel and comprehensive method of automatic target recognition based on real ISAR images with the aim to recognize the non-cooperative ship targets. The special characteristics of the ISAR images for the real data compared with the simulated ISAR images are analyzed firstly. Then,the novel technique for the target recognition is proposed,and it consists of three steps,including the preprocessing,feature extraction and classification. Some segmentation and morphological methods are used in the preprocessing to obtain the clear target images. Then,six different features for the ISAR images are extracted.By estimating the features' conditional probability, the effectiveness and robustness of these features are demonstrated. Finally,Fisher's linear classifier is applied in the classification step. The results for the allfeature space are provided to illustrate the effectiveness of the proposed method. 展开更多
关键词 ISAR images FEATURE extraction recognition SHIP target
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部