A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cy...A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cycle length minimization problem was considered to generate optimal signal timings for roundabout, and a set of constraints to ensure feasibility and safety of the resulting optimal signal settings were proposed. Extensive experimental analyses in comparison with signalized intersection reveal that the proposed model is quite promising for application in design of roundabout signals, and the minimum cycle length can decrease from 186 s to 79 s while the capacity increases from 8 682 pcu/h to 9 011 pcu/h under high demand scenario. Sensitivity analysis with respect to the system performance show that the lane assignment plan, number of circulatory lanes and left turn ratio are three critical factors which have dominate impacts on performance of signalized roundabout展开更多
For a mesoscopic L-C circuit,besides the Louisell's quantization scheme in which electric charge q andelectric current I are respectively quantized as the coordinate operator Q and momentum operator P,in this pape...For a mesoscopic L-C circuit,besides the Louisell's quantization scheme in which electric charge q andelectric current I are respectively quantized as the coordinate operator Q and momentum operator P,in this paperwe propose a new quantization scheme in the context of number-phase quantization through the standard Lagrangianformalism.The comparison between this number-phase quantization with the Josephson junction's Cooper pair number-phase-difference quantization scheme is made.展开更多
The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase...The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods combined with the upwind scheme are usually used to solve the phase pressure equation. In this case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways to calculate the nonlinear coefficients may have distinct and significant effects, which have been investigated by some authors. We propose a new algorithm to obtain a more effective and stable approximation of the coefficients under the consideration of the upwind scheme.展开更多
The complex-valued modulating vectors for the subcarriers consist of two kinds of components: One is the information-bearing components superposed with pseudo-randomized phases and the other is the suppression compone...The complex-valued modulating vectors for the subcarriers consist of two kinds of components: One is the information-bearing components superposed with pseudo-randomized phases and the other is the suppression components with specified scrambling phases. The pseudo randomized phases are generated according to the predefined polynomial and mapping function whereas the scrambling phases are from a gradient algorithm. The simulation results verify the rationality and validity of the phase scrambling.展开更多
Formal analysis of the bubble phenomena of the second order relaxation scheme is presented when this method is applied to phase transition equations. The reason of oscillations is that the second order scheme can’t f...Formal analysis of the bubble phenomena of the second order relaxation scheme is presented when this method is applied to phase transition equations. The reason of oscillations is that the second order scheme can’t find the discontinuities on the phase boundary. Based on this realization, a second order relaxation scheme is derived to eliminate it. This new method finds all components and characteristic discontinuities, thus the phase boundary is found exactly. The difference of presented new method and the well-known Nessyahu-Tadmor(NT) scheme is also studied. From the numerical experiment, the new derived scheme is shown much better to compute the phase transition equations.展开更多
云贵—华南准静止锋使其以北地区成为研究冬季雨雪过渡区内不同降水相态的理想平台。通过对2018年1月25—27日南方凝冻天气过程中天气学和云微物理参数的分析,定性探讨了次冻结层的温度与冰核活化温度对不同降水相态形成的影响,进而利...云贵—华南准静止锋使其以北地区成为研究冬季雨雪过渡区内不同降水相态的理想平台。通过对2018年1月25—27日南方凝冻天气过程中天气学和云微物理参数的分析,定性探讨了次冻结层的温度与冰核活化温度对不同降水相态形成的影响,进而利用耦合BTC降水相态诊断方案(简称“BTC方案”)的WRF(Weather Research and Forecasting)模式,对本次凝冻天气的降水相态、冻雨发生区域与冻雨量进行数值模拟。结果表明:横贯云贵高原和南岭地区的准静止锋导致的锋前“冷—暖—冷”的温度垂直结构有利于多相态降水的形成。耦合BTC方案的WRF模式可模拟出不同降水相态落区的空间分布,其模拟冻雨落区时空分布与观测基本一致,但冰粒的空报率非常高。分析WRF模式模拟的多相态降水时温度、相对湿度和水成物的垂直分布特征,云内水成物初始相态为液态,在高空逆温层存在的前提下,次冻结层中冰核活化温度是区分冻雨和冰粒的临界指标且具有明确的物理机制。利用次冻结层中的冰核活化温度来代替BTC方案中有关冻雨和冰粒的判据后,冻雨落区预报准确率较BTC方案提高了13%,表明直接利用次冻结层的冰核活化温度判断冻雨可行。展开更多
对双主动全桥DAB(dual active bridge)双向DC/DC变换器的调制方案进行了研究,DAB变换器的主要优势在于具有对称结构、双向潮流能力、宽软开关区域和灵活的控制能力等特点。控制这种拓扑结构最简单的方法是通过控制变换器原副边全桥之间...对双主动全桥DAB(dual active bridge)双向DC/DC变换器的调制方案进行了研究,DAB变换器的主要优势在于具有对称结构、双向潮流能力、宽软开关区域和灵活的控制能力等特点。控制这种拓扑结构最简单的方法是通过控制变换器原副边全桥之间的移相角来控制功率传输的方向和大小。然而在轻载条件下,当变换器的输入或输出电压变化较大时,会产生大量的无功功率,同时部分开关管的零电压开关ZVS(zero voltage switching)操作会丢失而直接导致转换效率变低。因此,为了提高DAB变换器的效率,提出了一种混合单移相调制PSM(phase shift modulation)方案,在保持控制简单的基础上,通过减小电感电流有效值,扩大软开关的范围,提高了变换器的效率。首先,通过让拓展移相EPS(extended phase shift)、双移相DPS(dual phase shift)以及三移相TPS(triple phase shift)调制方案中的可控变量相等,从而形成了4种不同的PSM方案。接着,对这些调制方案进行了稳态特征的比较分析,包括传输功率容量、电感电流水平以及软开关性能等。在此基础上,提出了一种混合PSM方案。最后,通过搭建实验平台验证了所提出调制方案的有效性和正确性。展开更多
We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop(PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz ove...We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop(PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz oven controlled crystal oscillator(OCXO) utilizing the sub-sampling PLL. Then the 6.8 GHz is mixed with 35 MHz from an direct digital synthesizer(DDS) which is also referenced to the 100 MHZ OCXO to generate the final6.835 GHz signal. Benefiting from the sub-sampling PLL, the processes of frequency multiplication, which are usually necessary in the development of a microwave source, are greatly simplified. The architecture of the microwave source is pretty simple. Correspondingly, its power consumption and cost are low. The absolute phase noises of the 6.835 GHz output signal are-47 d Bc/Hz,-77 dBc/Hz,-104 dBc/Hz and-121 dBc/Hz at1 Hz, 10 Hz, 100 Hz and 1 kHz offset frequencies, respectively. The frequency stability limited by the phase noise through the Dick effect is theoretically estimated to be better than 5.0 × 10^-14τ^1/2 when it is used as the local oscillator of the Rb atomic clocks. This low phase noise microwave source can also be used in other experiments of precision measurement physics.展开更多
The structure-preserving property, in both the time domain and the frequency domain, is an important index for evaluating validity of a numerical method. Even in the known structure-preserving methods such as the symp...The structure-preserving property, in both the time domain and the frequency domain, is an important index for evaluating validity of a numerical method. Even in the known structure-preserving methods such as the symplectic method, the inherent conser- vation law in the frequency domain is hardly conserved. By considering a mathematical pendulum model, a Stormer-Verlet scheme is first constructed in a Hamiltonian frame- work. The conservation law of the StSrmer-Verlet scheme is derived, including the total energy expressed in the time domain and periodicity in the frequency domain. To track the structure-preserving properties of the Stormer-Verlet scheme associated with the con- servation law, the motion of the mathematical pendulum is simulated with different time step lengths. The numerical results illustrate that the StSrmer-Verlet scheme can preserve the total energy of the model but cannot preserve periodicity at all. A phase correction is performed for the StSrmer-Verlet scheme. The results imply that the phase correction can improve the conservative property of periodicity of the Stormer-Verlet scheme.展开更多
A finite-difference algorithm is proposed for numerical modeling of hydrodynamic flows with rarefaction shocks, in which the fluid undergoes a jump-like liquid-gas phase transition. This new type of flow discontinuity...A finite-difference algorithm is proposed for numerical modeling of hydrodynamic flows with rarefaction shocks, in which the fluid undergoes a jump-like liquid-gas phase transition. This new type of flow discontinuity, unexplored so far in computational fluid dynamics, arises in the approximation of phase-flip(PF) hydrodynamics, where a highly dynamic fluid is allowed to reach the innermost limit of metastability at the spinodal, upon which an instantaneous relaxation to the full phase equilibrium(EQ) is assumed. A new element in the proposed method is artificial kinetics of the phase transition, represented by an artificial relaxation term in the energy equation for a "hidden"component of the internal energy, temporarily withdrawn from the fluid at the moment of the PF transition. When combined with an appropriate variant of artificial viscosity in the Lagrangian framework, the latter ensures convergence to exact discontinuous solutions, which is demonstrated with several test cases.展开更多
In this paper,we introduce a new deep learning framework for discovering the phase-field models from existing image data.The new framework embraces the approximation power of physics informed neural networks(PINNs)and...In this paper,we introduce a new deep learning framework for discovering the phase-field models from existing image data.The new framework embraces the approximation power of physics informed neural networks(PINNs)and the computational efficiency of the pseudo-spectral methods,which we named pseudo-spectral PINN or SPINN.Unlike the baseline PINN,the pseudo-spectral PINN has several advantages.First of all,it requires less training data.A minimum of two temporal snapshots with uniform spatial resolution would be adequate.Secondly,it is computationally efficient,as the pseudo-spectral method is used for spatial discretization.Thirdly,it requires less trainable parameters compared with the baseline PINN,which significantly simplifies the training process and potentially assures fewer local minima or saddle points.We illustrate the effectiveness of pseudo-spectral PINN through several numerical examples.The newly proposed pseudo-spectral PINN is rather general,and it can be readily applied to discover other FDE-based models from image data.展开更多
Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fre...Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed.展开更多
基金Project(51178345) supported by the National Natural Science Foundation of ChinaProject(2011AA110305) supported by the National High Technology Research and Development Program of ChinaProject supported by the Program for Young Excellent Talents in Tongji University, China
文摘A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cycle length minimization problem was considered to generate optimal signal timings for roundabout, and a set of constraints to ensure feasibility and safety of the resulting optimal signal settings were proposed. Extensive experimental analyses in comparison with signalized intersection reveal that the proposed model is quite promising for application in design of roundabout signals, and the minimum cycle length can decrease from 186 s to 79 s while the capacity increases from 8 682 pcu/h to 9 011 pcu/h under high demand scenario. Sensitivity analysis with respect to the system performance show that the lane assignment plan, number of circulatory lanes and left turn ratio are three critical factors which have dominate impacts on performance of signalized roundabout
基金The project supported by the President Foundation of the Chinese Academy of Sciences
文摘For a mesoscopic L-C circuit,besides the Louisell's quantization scheme in which electric charge q andelectric current I are respectively quantized as the coordinate operator Q and momentum operator P,in this paperwe propose a new quantization scheme in the context of number-phase quantization through the standard Lagrangianformalism.The comparison between this number-phase quantization with the Josephson junction's Cooper pair number-phase-difference quantization scheme is made.
文摘The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods combined with the upwind scheme are usually used to solve the phase pressure equation. In this case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways to calculate the nonlinear coefficients may have distinct and significant effects, which have been investigated by some authors. We propose a new algorithm to obtain a more effective and stable approximation of the coefficients under the consideration of the upwind scheme.
文摘The complex-valued modulating vectors for the subcarriers consist of two kinds of components: One is the information-bearing components superposed with pseudo-randomized phases and the other is the suppression components with specified scrambling phases. The pseudo randomized phases are generated according to the predefined polynomial and mapping function whereas the scrambling phases are from a gradient algorithm. The simulation results verify the rationality and validity of the phase scrambling.
文摘Formal analysis of the bubble phenomena of the second order relaxation scheme is presented when this method is applied to phase transition equations. The reason of oscillations is that the second order scheme can’t find the discontinuities on the phase boundary. Based on this realization, a second order relaxation scheme is derived to eliminate it. This new method finds all components and characteristic discontinuities, thus the phase boundary is found exactly. The difference of presented new method and the well-known Nessyahu-Tadmor(NT) scheme is also studied. From the numerical experiment, the new derived scheme is shown much better to compute the phase transition equations.
文摘云贵—华南准静止锋使其以北地区成为研究冬季雨雪过渡区内不同降水相态的理想平台。通过对2018年1月25—27日南方凝冻天气过程中天气学和云微物理参数的分析,定性探讨了次冻结层的温度与冰核活化温度对不同降水相态形成的影响,进而利用耦合BTC降水相态诊断方案(简称“BTC方案”)的WRF(Weather Research and Forecasting)模式,对本次凝冻天气的降水相态、冻雨发生区域与冻雨量进行数值模拟。结果表明:横贯云贵高原和南岭地区的准静止锋导致的锋前“冷—暖—冷”的温度垂直结构有利于多相态降水的形成。耦合BTC方案的WRF模式可模拟出不同降水相态落区的空间分布,其模拟冻雨落区时空分布与观测基本一致,但冰粒的空报率非常高。分析WRF模式模拟的多相态降水时温度、相对湿度和水成物的垂直分布特征,云内水成物初始相态为液态,在高空逆温层存在的前提下,次冻结层中冰核活化温度是区分冻雨和冰粒的临界指标且具有明确的物理机制。利用次冻结层中的冰核活化温度来代替BTC方案中有关冻雨和冰粒的判据后,冻雨落区预报准确率较BTC方案提高了13%,表明直接利用次冻结层的冰核活化温度判断冻雨可行。
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0304400the National Natural Science Foundation of China under Grant Nos 91336213,11703031,U1731132 and 11774108
文摘We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop(PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz oven controlled crystal oscillator(OCXO) utilizing the sub-sampling PLL. Then the 6.8 GHz is mixed with 35 MHz from an direct digital synthesizer(DDS) which is also referenced to the 100 MHZ OCXO to generate the final6.835 GHz signal. Benefiting from the sub-sampling PLL, the processes of frequency multiplication, which are usually necessary in the development of a microwave source, are greatly simplified. The architecture of the microwave source is pretty simple. Correspondingly, its power consumption and cost are low. The absolute phase noises of the 6.835 GHz output signal are-47 d Bc/Hz,-77 dBc/Hz,-104 dBc/Hz and-121 dBc/Hz at1 Hz, 10 Hz, 100 Hz and 1 kHz offset frequencies, respectively. The frequency stability limited by the phase noise through the Dick effect is theoretically estimated to be better than 5.0 × 10^-14τ^1/2 when it is used as the local oscillator of the Rb atomic clocks. This low phase noise microwave source can also be used in other experiments of precision measurement physics.
基金the National Natural Science Foundation of China(Nos.11672241,11372253,and 11432010)the Astronautics Supporting Technology Foundation of China(No.2015-HT-XGD)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(Nos.GZ1312 and GZ1605)
文摘The structure-preserving property, in both the time domain and the frequency domain, is an important index for evaluating validity of a numerical method. Even in the known structure-preserving methods such as the symplectic method, the inherent conser- vation law in the frequency domain is hardly conserved. By considering a mathematical pendulum model, a Stormer-Verlet scheme is first constructed in a Hamiltonian frame- work. The conservation law of the StSrmer-Verlet scheme is derived, including the total energy expressed in the time domain and periodicity in the frequency domain. To track the structure-preserving properties of the Stormer-Verlet scheme associated with the con- servation law, the motion of the mathematical pendulum is simulated with different time step lengths. The numerical results illustrate that the StSrmer-Verlet scheme can preserve the total energy of the model but cannot preserve periodicity at all. A phase correction is performed for the StSrmer-Verlet scheme. The results imply that the phase correction can improve the conservative property of periodicity of the Stormer-Verlet scheme.
文摘A finite-difference algorithm is proposed for numerical modeling of hydrodynamic flows with rarefaction shocks, in which the fluid undergoes a jump-like liquid-gas phase transition. This new type of flow discontinuity, unexplored so far in computational fluid dynamics, arises in the approximation of phase-flip(PF) hydrodynamics, where a highly dynamic fluid is allowed to reach the innermost limit of metastability at the spinodal, upon which an instantaneous relaxation to the full phase equilibrium(EQ) is assumed. A new element in the proposed method is artificial kinetics of the phase transition, represented by an artificial relaxation term in the energy equation for a "hidden"component of the internal energy, temporarily withdrawn from the fluid at the moment of the PF transition. When combined with an appropriate variant of artificial viscosity in the Lagrangian framework, the latter ensures convergence to exact discontinuous solutions, which is demonstrated with several test cases.
基金the support from NSF DMS-1816783NVIDIA Corporation for their donation of a Quadro P6000 GPU for conducting some of the numerical simulations in this paper.
文摘In this paper,we introduce a new deep learning framework for discovering the phase-field models from existing image data.The new framework embraces the approximation power of physics informed neural networks(PINNs)and the computational efficiency of the pseudo-spectral methods,which we named pseudo-spectral PINN or SPINN.Unlike the baseline PINN,the pseudo-spectral PINN has several advantages.First of all,it requires less training data.A minimum of two temporal snapshots with uniform spatial resolution would be adequate.Secondly,it is computationally efficient,as the pseudo-spectral method is used for spatial discretization.Thirdly,it requires less trainable parameters compared with the baseline PINN,which significantly simplifies the training process and potentially assures fewer local minima or saddle points.We illustrate the effectiveness of pseudo-spectral PINN through several numerical examples.The newly proposed pseudo-spectral PINN is rather general,and it can be readily applied to discover other FDE-based models from image data.
文摘Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed.