Objective: To compare and analyze the image quality and radiation dose of three scanning modes of dual-source CT coronary artery retrospectively, and to discuss the application value of TurboFlash coarse pitch scannin...Objective: To compare and analyze the image quality and radiation dose of three scanning modes of dual-source CT coronary artery retrospectively, and to discuss the application value of TurboFlash coarse pitch scanning mode. Methods: The imaging data of 100 patients who underwent CT coronary angiography (CCTA) using Siemens force CT retrospective gated triggering spiral scan (RES-SPIRAL), adaptive prospective gated triggering sequence scan (SEQ) and prospective coarse pitch scan (TurboFlash) retrospectively was collected. The image quality was evaluated by objective and subjective methods. The effective radiation dose of patients was compared and analyzed, and the indications of the three scanning modes were analyzed. The application value of dual-source CT TurboFlash coarse pitch scanning in coronary artery imaging was evaluated. Results: The results showed that the left main coronary artery, the right coronary artery and their tertiary branches could be clearly displayed in the three groups of images: the left anterior descending branch, the left circumflex branch, and their three-level branches. There was no statistical difference in subjective image quality among the three groups of pictures (P > 0.05). There was no statistical difference in objective evaluation indexes, such as CT value, SNR, CNR and Noise among the three groups (P > 0.05). The patient radiation dose results showed that the effective radiation dose ED of RES-SPIRA scan was (9.22 ± 1.33) mSv. The dose of SEQ was (2.88 ± 2.47) mSv, and the dose of TurboFlash was (0.51 ± 0.16) mSv. There was significant difference in comparison of the three groups (P 0.05). RES-spiral scanning had the highest radiation dose and TurboFlash coarse pitch scanning (TurboFlash) had the lowest radiation dose. Conclusion: TurboFlash coarse pitch scanning is low in dosage, fast in speed and wide in adaptability. It is especially suitable for the elderly, children, coma and other patients who cannot cooperate with breath-holding examination, as well as for the screening and examination of coronary artery diseases in asymptomatic population. Undoubtedly, it is a worthy method of heart coronary artery examination.展开更多
Proton FLASH therapy with an ultra-high dose rate is in urgent need of more accurate treatment plan system(TPS)to promote the development of proton computed tomography(CT)without intrinsic error compared with the tran...Proton FLASH therapy with an ultra-high dose rate is in urgent need of more accurate treatment plan system(TPS)to promote the development of proton computed tomography(CT)without intrinsic error compared with the transformation from X-ray CT.This paper presents an imaging mode of proton CT based on static superconducting gantry different from the conventional rotational gantry.The beam energy for proton CT is fixed at 350 MeV,which is boosted by a compact proton linac from 230 MeV,and then delivered by the gantry to scan the patient’s body for proton imaging.This study demonstrates that the static superconducting gantry-based proton CT is effective in clinical applications.In particular,the imaging mode,which combines the relative stopping power(RSP)map from X-ray CT as prior knowledge,can produce much a higher accuracy RSP map for TPSs and positioning and achieve ultra-fast image for real-time image-guided radiotherapy.This paper presents the conceptual design of a boosting linac,static superconducting gantry and proton CT imaging equipment.The feasibility of energy enhancement is verified by simulation,and results from Geant4 simulations and reconstruction algorithms are presented,including the simulation verification of the advantage of the imaging mode.展开更多
Objective: On the premise that the image quality meets the requirements of clinical diagnosis, we explored the methods to reduce the radiation dose of coronary artery imaging with Dual-Source CT (DSCT). Methods: We ra...Objective: On the premise that the image quality meets the requirements of clinical diagnosis, we explored the methods to reduce the radiation dose of coronary artery imaging with Dual-Source CT (DSCT). Methods: We randomly selected 200 patients with coronary heat disease (BIM 0.05). The average image noise in group A is (41.76 ± 7.98) HU, in group B the average image noise is (43.97 ± 3.88) HU, the dif- ference between the two groups was not statistically significant (P>0.05). The average CTDIvol of group A and B were (20.63 ± 2.24) mGy, (38.11 ± 10.69) mGy, respectively, then P <0.01. The average DLP of group A and B are (235.75 ± 28.64) mGycm and (492.59 ± 125.49) mGycm respectively, then P <0.01, the dif- ference of radiation dose had statistical significance (P<0.05). Conclusions: For coronary artery imaging with DSCT the heart electric pulse (AUTO) regulation technology can meet the diagnostic requirements and effectively reduce the radiation dose.展开更多
文摘Objective: To compare and analyze the image quality and radiation dose of three scanning modes of dual-source CT coronary artery retrospectively, and to discuss the application value of TurboFlash coarse pitch scanning mode. Methods: The imaging data of 100 patients who underwent CT coronary angiography (CCTA) using Siemens force CT retrospective gated triggering spiral scan (RES-SPIRAL), adaptive prospective gated triggering sequence scan (SEQ) and prospective coarse pitch scan (TurboFlash) retrospectively was collected. The image quality was evaluated by objective and subjective methods. The effective radiation dose of patients was compared and analyzed, and the indications of the three scanning modes were analyzed. The application value of dual-source CT TurboFlash coarse pitch scanning in coronary artery imaging was evaluated. Results: The results showed that the left main coronary artery, the right coronary artery and their tertiary branches could be clearly displayed in the three groups of images: the left anterior descending branch, the left circumflex branch, and their three-level branches. There was no statistical difference in subjective image quality among the three groups of pictures (P > 0.05). There was no statistical difference in objective evaluation indexes, such as CT value, SNR, CNR and Noise among the three groups (P > 0.05). The patient radiation dose results showed that the effective radiation dose ED of RES-SPIRA scan was (9.22 ± 1.33) mSv. The dose of SEQ was (2.88 ± 2.47) mSv, and the dose of TurboFlash was (0.51 ± 0.16) mSv. There was significant difference in comparison of the three groups (P 0.05). RES-spiral scanning had the highest radiation dose and TurboFlash coarse pitch scanning (TurboFlash) had the lowest radiation dose. Conclusion: TurboFlash coarse pitch scanning is low in dosage, fast in speed and wide in adaptability. It is especially suitable for the elderly, children, coma and other patients who cannot cooperate with breath-holding examination, as well as for the screening and examination of coronary artery diseases in asymptomatic population. Undoubtedly, it is a worthy method of heart coronary artery examination.
基金supported by the Research collaboration on Thailand new synchrotron light source facility(SPS-Ⅱ)(No.ANSO-CRKP-2020-16).
文摘Proton FLASH therapy with an ultra-high dose rate is in urgent need of more accurate treatment plan system(TPS)to promote the development of proton computed tomography(CT)without intrinsic error compared with the transformation from X-ray CT.This paper presents an imaging mode of proton CT based on static superconducting gantry different from the conventional rotational gantry.The beam energy for proton CT is fixed at 350 MeV,which is boosted by a compact proton linac from 230 MeV,and then delivered by the gantry to scan the patient’s body for proton imaging.This study demonstrates that the static superconducting gantry-based proton CT is effective in clinical applications.In particular,the imaging mode,which combines the relative stopping power(RSP)map from X-ray CT as prior knowledge,can produce much a higher accuracy RSP map for TPSs and positioning and achieve ultra-fast image for real-time image-guided radiotherapy.This paper presents the conceptual design of a boosting linac,static superconducting gantry and proton CT imaging equipment.The feasibility of energy enhancement is verified by simulation,and results from Geant4 simulations and reconstruction algorithms are presented,including the simulation verification of the advantage of the imaging mode.
文摘Objective: On the premise that the image quality meets the requirements of clinical diagnosis, we explored the methods to reduce the radiation dose of coronary artery imaging with Dual-Source CT (DSCT). Methods: We randomly selected 200 patients with coronary heat disease (BIM 0.05). The average image noise in group A is (41.76 ± 7.98) HU, in group B the average image noise is (43.97 ± 3.88) HU, the dif- ference between the two groups was not statistically significant (P>0.05). The average CTDIvol of group A and B were (20.63 ± 2.24) mGy, (38.11 ± 10.69) mGy, respectively, then P <0.01. The average DLP of group A and B are (235.75 ± 28.64) mGycm and (492.59 ± 125.49) mGycm respectively, then P <0.01, the dif- ference of radiation dose had statistical significance (P<0.05). Conclusions: For coronary artery imaging with DSCT the heart electric pulse (AUTO) regulation technology can meet the diagnostic requirements and effectively reduce the radiation dose.