The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr...The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.展开更多
The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective...The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.展开更多
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar...Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.展开更多
We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex contin...We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.展开更多
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a...Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.展开更多
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa...Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac...Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
Bit-field separation is an important part of gravity and magnetic data processing.In order to extract different levels of anomaly information better,this paper introduces the dual-tree complex wavelet multi-scale sepa...Bit-field separation is an important part of gravity and magnetic data processing.In order to extract different levels of anomaly information better,this paper introduces the dual-tree complex wavelet multi-scale separation to the processing of bit-field data firstly and uses the geological model of different buried depth to ve-rify its feasibility.Finally,the dual-tree complex wavelet is applied to the aeromagnetic anomaly in Jinchuan copper nickel mining area.The results show that the method can effectively separate the anomaly information of different scales and analyze the output results with relevant geological data.展开更多
This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method u...This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm.展开更多
In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum ...In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.展开更多
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters...In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.展开更多
Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t...Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.展开更多
Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wave...Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.展开更多
To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan charac...To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan character sample image the first level approximation component of the Haar wavelet transform is calculated.Secondly the approximation component is partitioned into several equal-sized zones. Finally the gradient direction histograms of each zone are calculated and the local direction histograms of the approximation component are considered as the features of the character sample image.The proposed method is tested on the recently developed off-line Tibetan handwritten character sample database.The experimental results demonstrate the effectiveness and efficiency of the proposed feature extraction method.Furthermore compared with the detail components the approximation component contributes more to the recognition accuracy.展开更多
The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the ta...The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the target spectrum is a smooth curve. In many cases, it needs to match unsmooth target spectrum for single determined response spectrum. An adjustment of time history via wavelet packet transform was presented, which is able to fit unsmooth target spectrum. It was found that there is a certain bias between the band center frequency of the component of seismic record after wavelet packet decomposition and the peak frequency of response spectra of wavelet packet components. For this reason, five strategies were presented to select iteration points, and the effects of the five strategies were compared with two calculation examples. It was turned out that the peak frequency of the response spectrum of wavelet packet component can lead to good fitting effect when it is selected as the iteration point. In the iteration process, it shows great promise in fitting non-smooth target spectrum and has a trend of converge.展开更多
Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method w...Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.展开更多
基金Supported by the National Natural Science Foundation of China (10971189, 11001247)the Zhejiang Natural Science Foundation of China (Y6090091)
文摘The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.
文摘The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(No.11402112)the National Key Technology Support Program (No.2012BAA01B02)。
文摘Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.
基金CulturalHeritage Protection Program of State Administration of CulturalHeritage (200001).
文摘We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.
基金National Natural Science Foundation of China(No.51303131)
文摘Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.
文摘Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
基金supported financially by FundamentalResearch Program of Shanxi Province(No.202103021223056).
文摘Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金the National Key R&D Program of China(No.2016YFC0600505).
文摘Bit-field separation is an important part of gravity and magnetic data processing.In order to extract different levels of anomaly information better,this paper introduces the dual-tree complex wavelet multi-scale separation to the processing of bit-field data firstly and uses the geological model of different buried depth to ve-rify its feasibility.Finally,the dual-tree complex wavelet is applied to the aeromagnetic anomaly in Jinchuan copper nickel mining area.The results show that the method can effectively separate the anomaly information of different scales and analyze the output results with relevant geological data.
文摘This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm.
文摘In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.
基金National Natural Science Foundation of China(60134010)
文摘In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2002AA812038)
文摘Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.
基金sponsored by National Science and Technology Major Project of China (No. 2008 ZX 05009-001)
文摘Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.
基金The National Natural Science Foundation of China(No.60963016)the National Social Science Foundation of China(No.17BXW037)
文摘To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan character sample image the first level approximation component of the Haar wavelet transform is calculated.Secondly the approximation component is partitioned into several equal-sized zones. Finally the gradient direction histograms of each zone are calculated and the local direction histograms of the approximation component are considered as the features of the character sample image.The proposed method is tested on the recently developed off-line Tibetan handwritten character sample database.The experimental results demonstrate the effectiveness and efficiency of the proposed feature extraction method.Furthermore compared with the detail components the approximation component contributes more to the recognition accuracy.
基金Projects(41272304,51374244,41372278,51304241)supported by the National Natural Science Foundation of ChinaProject(2010CB732004)supported by the National Basic Research Program of China
文摘The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the target spectrum is a smooth curve. In many cases, it needs to match unsmooth target spectrum for single determined response spectrum. An adjustment of time history via wavelet packet transform was presented, which is able to fit unsmooth target spectrum. It was found that there is a certain bias between the band center frequency of the component of seismic record after wavelet packet decomposition and the peak frequency of response spectra of wavelet packet components. For this reason, five strategies were presented to select iteration points, and the effects of the five strategies were compared with two calculation examples. It was turned out that the peak frequency of the response spectrum of wavelet packet component can lead to good fitting effect when it is selected as the iteration point. In the iteration process, it shows great promise in fitting non-smooth target spectrum and has a trend of converge.
基金supported by the National Science and Technology Major Project(No.2011ZX05007-006)the 973 Program of China(No.2013CB228604)the major Project of Petrochina(No.2014B-0610)
文摘Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.