The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-ca...The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633nm output frequency to a super-cavity with the Pound Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stim- ulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359nm output is estimated to be 72.5 mHz.展开更多
We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity la...We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.展开更多
We describe and compare the performances of two crucial configurations for a tunable dual-wavelength fiber laser, namely, the linear and ring configurations. The performances of these two cavities and the tunability i...We describe and compare the performances of two crucial configurations for a tunable dual-wavelength fiber laser, namely, the linear and ring configurations. The performances of these two cavities and the tunability in the dual-wavelength output varied from 0.8 to 11.9 nm are characterized. The ring cavity provides a better performance, achieving an average output power of 0.5 dBm, with a power fluctuation of only 1.1 dB and a signal-to-noise ratio (SNR) of 66 dB. Moreover, the ring cavity has minimal or no background amplified spontaneous emission (ASE).展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science&Technology Cooperation Program of China under Grant No 2010DFR10900
文摘The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633nm output frequency to a super-cavity with the Pound Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stim- ulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359nm output is estimated to be 72.5 mHz.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science and Technology Cooperation Program of China under Grant No 2010DFR10900
文摘We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.
文摘We describe and compare the performances of two crucial configurations for a tunable dual-wavelength fiber laser, namely, the linear and ring configurations. The performances of these two cavities and the tunability in the dual-wavelength output varied from 0.8 to 11.9 nm are characterized. The ring cavity provides a better performance, achieving an average output power of 0.5 dBm, with a power fluctuation of only 1.1 dB and a signal-to-noise ratio (SNR) of 66 dB. Moreover, the ring cavity has minimal or no background amplified spontaneous emission (ASE).