The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical mode...The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical model of resistance to deformation was established. The microstructure, inclusion and fracture surface were studied by using the method of micro structure analysis, scanning, energy spectrum and electron microscope. The results show that Cu has effect on the hot ductility, and the hot ductility of 304HC stainless steel decrease with the increase of content of Cu. The deformation temperature also has much effect on the hot ductility, the suitable deformation temperature are 1100-1200℃. The reason of it is that the Cu rich chemical compounds were precipitated from austenite phase during cooling. The Cu rich chemical compounds are brittle substance such as Cu2S, Cu2O and ε-Cu etc.展开更多
基金This study was financially supported by both the National Natural Science Founda- tion of China (Grant No.59995440)the Natural Science Foundation of Liaoning Province (Grant No.2001101021).
文摘The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical model of resistance to deformation was established. The microstructure, inclusion and fracture surface were studied by using the method of micro structure analysis, scanning, energy spectrum and electron microscope. The results show that Cu has effect on the hot ductility, and the hot ductility of 304HC stainless steel decrease with the increase of content of Cu. The deformation temperature also has much effect on the hot ductility, the suitable deformation temperature are 1100-1200℃. The reason of it is that the Cu rich chemical compounds were precipitated from austenite phase during cooling. The Cu rich chemical compounds are brittle substance such as Cu2S, Cu2O and ε-Cu etc.