The characteristics of the urban heat island effect and the climate change in Shanghai and its possible mechanism are analyzed based on monthly meteorological data from 1961 to 1997 at 16 stations in Shanghai and its ...The characteristics of the urban heat island effect and the climate change in Shanghai and its possible mechanism are analyzed based on monthly meteorological data from 1961 to 1997 at 16 stations in Shanghai and its adjacent areas. The results indicate that Shanghai City has the characteristics of a heat island of air temperature and maximum and minimum air temperature, a cold island of surface soil temperature, a weak rainy island of precipitation, and a turbid island of minimum visibility and aerosols, with centers at or near Longhua station (the urban station of Shanghai). Besides theses, the characteristics of a cloudy island and sunshine duration island are also obvious, but their centers are located in the southern part of the urban area and in the southern suburbs. A linear trend analysis suggests that all of the above urban effects intensified from 1961 to 1997. So far as the heat island effect is concerned, the heat island index (difference of annual temperature between Longhua and Songjiang stations) strengthens (weakens) as the economic development increases (decreases). The authors suggest that the heating increase caused by increasing energy consumption due to economic development is a main factor in controlling the climate change of Shanghai besides natural factors. On the other hand, increasing pollution aerosols contribute to the enhancement of the turbid island and cooling. On the whole, the heating effect caused by increasing energy consumption is stronger than the cooling effect caused by the turbid island and pollution aerosols.展开更多
Data mining has the potential to provide information for improving clinical acupuncture strategies by uncovering hidden rules between acupuncture manipulation and therapeutic effects in a data set. In this study, we p...Data mining has the potential to provide information for improving clinical acupuncture strategies by uncovering hidden rules between acupuncture manipulation and therapeutic effects in a data set. In this study, we performed acupuncture on 30 patients with hemiplegia due to acute ischemic stroke. All participants were pre-screened to ensure that they exhibited immediate responses to acupuncture. We used a twirling reinforcing acupuncture manipulation at the specific lines between the bilateral Baihui(GV20) and Taiyang(EX-HN5). We collected neurologic deficit score, simplified Fugl-Meyer assessment score, muscle strength of the proximal and distal hemiplegic limbs, ratio of the maximal H-reflex to the maximal M-wave(Hmax/Mmax), muscle tension at baseline and immediately after treatment, and the syndromes of traditional Chinese medicine at baseline. We then conducted data mining using an association algorithm and an artificial neural network backpropagation algorithm. We found that the twirling reinforcing manipulation had no obvious therapeutic difference in traditional Chinese medicine syndromes of "Deficiency and Excess". The change in the muscle strength of the upper distal and lower proximal limbs was one of the main factors affecting the immediate change in Fugl-Meyer scores. Additionally, we found a positive correlation between the muscle tension change of the upper limb and Hmax/Mmax immediate change, and both positive and negative correlations existed between the muscle tension change of the lower limb and immediate Hmax/Mmax change. Additionally, when the difference value of muscle tension for the upper and lower limbs was 〉 0 or 〈 0, the difference value of Hmax/Mmax was correspondingly positive or negative, indicating the scalp acupuncture has a bidirectional effect on muscle tension in hemiplegic limbs. Therefore, acupuncture with twirling reinforcing manipulation has distinct effects on acute ischemic stroke patients with different symptoms or stages of disease. Improved muscle tension in the upper and lower limbs, reflected by the variation in the Hmax/Mmax ratio, is crucial for recovery of motor function from hemiplegia.展开更多
基金supported the National Natural Science Foundation of China under Grant No.49899270.
文摘The characteristics of the urban heat island effect and the climate change in Shanghai and its possible mechanism are analyzed based on monthly meteorological data from 1961 to 1997 at 16 stations in Shanghai and its adjacent areas. The results indicate that Shanghai City has the characteristics of a heat island of air temperature and maximum and minimum air temperature, a cold island of surface soil temperature, a weak rainy island of precipitation, and a turbid island of minimum visibility and aerosols, with centers at or near Longhua station (the urban station of Shanghai). Besides theses, the characteristics of a cloudy island and sunshine duration island are also obvious, but their centers are located in the southern part of the urban area and in the southern suburbs. A linear trend analysis suggests that all of the above urban effects intensified from 1961 to 1997. So far as the heat island effect is concerned, the heat island index (difference of annual temperature between Longhua and Songjiang stations) strengthens (weakens) as the economic development increases (decreases). The authors suggest that the heating increase caused by increasing energy consumption due to economic development is a main factor in controlling the climate change of Shanghai besides natural factors. On the other hand, increasing pollution aerosols contribute to the enhancement of the turbid island and cooling. On the whole, the heating effect caused by increasing energy consumption is stronger than the cooling effect caused by the turbid island and pollution aerosols.
基金supported by a grant from the Supporting Program of the"Eleventh Five-year Plan"for Science&Technology Research of China,Ministry of Science and Technology of China,No.2006BAI12B02a grant from the Scientific Research Fund for Talent Introduction in the Gansu University of Chinese Medicine of China,No.2012-11
文摘Data mining has the potential to provide information for improving clinical acupuncture strategies by uncovering hidden rules between acupuncture manipulation and therapeutic effects in a data set. In this study, we performed acupuncture on 30 patients with hemiplegia due to acute ischemic stroke. All participants were pre-screened to ensure that they exhibited immediate responses to acupuncture. We used a twirling reinforcing acupuncture manipulation at the specific lines between the bilateral Baihui(GV20) and Taiyang(EX-HN5). We collected neurologic deficit score, simplified Fugl-Meyer assessment score, muscle strength of the proximal and distal hemiplegic limbs, ratio of the maximal H-reflex to the maximal M-wave(Hmax/Mmax), muscle tension at baseline and immediately after treatment, and the syndromes of traditional Chinese medicine at baseline. We then conducted data mining using an association algorithm and an artificial neural network backpropagation algorithm. We found that the twirling reinforcing manipulation had no obvious therapeutic difference in traditional Chinese medicine syndromes of "Deficiency and Excess". The change in the muscle strength of the upper distal and lower proximal limbs was one of the main factors affecting the immediate change in Fugl-Meyer scores. Additionally, we found a positive correlation between the muscle tension change of the upper limb and Hmax/Mmax immediate change, and both positive and negative correlations existed between the muscle tension change of the lower limb and immediate Hmax/Mmax change. Additionally, when the difference value of muscle tension for the upper and lower limbs was 〉 0 or 〈 0, the difference value of Hmax/Mmax was correspondingly positive or negative, indicating the scalp acupuncture has a bidirectional effect on muscle tension in hemiplegic limbs. Therefore, acupuncture with twirling reinforcing manipulation has distinct effects on acute ischemic stroke patients with different symptoms or stages of disease. Improved muscle tension in the upper and lower limbs, reflected by the variation in the Hmax/Mmax ratio, is crucial for recovery of motor function from hemiplegia.