Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chines...Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chinese culture.Taking Tyler’s curriculum framework as the starting point,this paper analyzes some factors that affect the integration of Chinese culture into the college English teaching and proposes some strategies for the integration of Chinese culture into college English teaching by innovating teaching objectives,enriching teaching contents,transforming modes of course delivery,and reconstructing the assessment system.展开更多
The work analyzes the basic assumption in Mach’s principle, namely that the inertia of material bodies is determined by their gravitational interaction with distant masses in the universe. However, while Mach’s prin...The work analyzes the basic assumption in Mach’s principle, namely that the inertia of material bodies is determined by their gravitational interaction with distant masses in the universe. However, while Mach’s principle is based on the so-called “long-range gravitational interaction” characterized by an infinitely large propagation velocity, our study is based on a “modified” long-range principle, assuming a very large but finite propagation velocity of the gravitational interaction between local material objects and distant matter. Thus, it is postulated that there are two types of gravitational interaction—short-range gravitational interaction between local objects and long-range gravitational interaction between local objects and distant matter in the universe, which are characterized by different propagation speeds, but with the same gravitational constant. On the basis of the modified long-range principle, a model of distant matter is built in the form of a hollow spherical layer with negligible thickness. The phenomenological assumption is made that the movement with acceleration of the local reference frame (RF) is related to a change in the spherically symmetric distribution of the lines of gravitational interaction of this RF with distant matter, which is expressed in a corresponding asymmetric distribution of the effective mass density on the hollow sphere. A simplified (idealized) model of the effective change of the hollow sphere of distant matter by cutting off separate segments of the sphere is proposed. On the basis of the model, the possibility of representing the inertial effects in three simplest types of reference frames through a corresponding gravitational interaction is considered: 1) inertial RF;2) RF moving in a straight line with constant acceleration;3) RF rotating with constant angular velocity. Expressions were obtained for the gravitational accelerations acting on the test body located inside the hollow sphere with a corresponding change (“cutting”). It is concluded that these accelerations can in a first approximation represent the inertial accelerations of the main types noted above. It is shown that in order to obtain reasonable values of the truncation parameters of the hollow sphere, it is necessary to assume that the gravitational interaction inside this sphere is not of the Newtonian type, i.e. the same depends on the distance not according to the law 1/r2, but according to modified law with a non-integer (fractional) exponent. This law corresponds to a fractal structure of the source of attraction inside the truncated sphere of distant matter. The issue of the possibility of the supposed modified long-range interaction is briefly discussed on the basis of a comparison of the finding a connection with the lines of force of the same with the “cosmic strings” assumed by a number of researchers, along which corresponding excitations (waves, particles) moving at super-light speed. The work advances the idea of the presence of unity and at the same time oppositeness of the inertia of material objects and the known gravitational interaction between them, which are generated by the properties of symmetry of the long-range gravitational interaction. Moreover, while the inertia of the bodies is due to the violation of this symmetry caused by their movement with acceleration, the gravitational interaction between the bodies is due to the aspiration to restore the symmetry of a far-reaching gravitational interaction, which is disturbed by the presence of local material bodies. In the conclusion of the work, the important physico-philosophical significance of Mach’s principle is emphasized, expressed in the understanding that not only the world of microscopic objects (“micro-world”), but also the world of huge cosmic objects (“mega-world”) can have a corresponding impact on our “macroscopic” world.展开更多
Spin-polarized periodic density functional theory was performed to characterize H2S adsorp- tion and dissociation on graphene oxides (GO) surface. The comprehensive reaction network of H2S oxidation with epoxy and h...Spin-polarized periodic density functional theory was performed to characterize H2S adsorp- tion and dissociation on graphene oxides (GO) surface. The comprehensive reaction network of H2S oxidation with epoxy and hydroxyl groups of GO was discussed. It is shown that the reduction reaction is mainly governed by epoxide ring opening and hydroxyl hydrogenation which is initiated by H transfer from H2S or its derivatives, hlrthermore, the presence of another OH group at the opposite side relative to the adsorbed H2S activates the oxygen group to facilitate epoxide ring opening and hydroxyl hydrogenation. For H2S interaction with -O and -OH groups adsorption on each side of graphene, the pathway is a favorable reaction path by the introduction of intermediate states, the predicted energy barriers are 3.2 and 10.4 kcal/mol, respectively, the second H transfer is tile rate-determining step in the whole reaction process. In addition, our calculations suggest that both epoxy and hydroxyl groups can enhance tile binding of S to the C-C bonds and the effect of hydroxyl group is more local than that of the epoxy.展开更多
Hemingway established a well-known literary theory - iceberg principle.He said he always attempted to create his literary works according to this principle.In his opinion,if a prose writer has a pretty clear idea of w...Hemingway established a well-known literary theory - iceberg principle.He said he always attempted to create his literary works according to this principle.In his opinion,if a prose writer has a pretty clear idea of what he writes about,then he can omit the things he knows,and the readers will strongly feel that what the writer has omitted seems to have been written as long as what he writes is authentic.Hemingway himself once said,"The dignity of movement of an iceberg is due to only one eighth of it being above water."Here,one eighth refers to the information given by the author,and the rest refers to the unwrit ten information that can be acquired in readers'imagination on the basis of the one eighth.The Killers is a good example of Hemingway's iceberg principle.This essay will analyse the characters in it to show how the principle was used in this short story.With no doubt the iceberg principle leaves a large space for the readers to imagine and better understand Hemingway's works.展开更多
By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variatio...By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.展开更多
This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian m...This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian mechanics and Birkhoffian mechanics as three research frames,we introduce Herglotz’s generalized variational principle,dynamical equations of Herglotz type,Noether symmetry and conserved quantities,and their generalization to time-delay dynamics,fractional dynamics and time-scale dynamics,and put forward some problems as suggestions for future research.展开更多
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equa...In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.展开更多
The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is nece...The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is necessary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system.Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics,and its core is the Pfaff-Birkhoff principle and Birkhoff′s equations.The study on the Birkhoffian mechanics is an important developmental direction of modern analytical mechanics.Here,the fractional Pfaff-Birkhoff variational problem is presented and studied.The definitions of fractional derivatives,the formulae for integration by parts and some other preliminaries are firstly given.Secondly,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff′s equations in terms of RieszRiemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively.Finally,an example is given to illustrate the application of the results.展开更多
In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we der...In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.展开更多
The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equation...The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equations derived thus are used to evaluate the energy, momentum and the action associated with the radiation. The results show that for a charged particle moving with speed ν, the longitudinal momentum associated with the transition radiation is approximately equal to ΔU/c for values of ?1- ν/c smaller than about 10-3 where ΔU is the total radiated energy dissipated during the interaction and cis the speed of light in free space. The action of the radiation, defined as the product of the total energy dissipated and the duration of the emission, increases as 1- ν/c decreases and, for an electron, it becomes equal to h/4π when ν = c - νm where νm is the speed pertinent to the lowest possible momentum associated with a particle confined inside the universe and?h is the Planck constant. Combining these results with Heisenberg’s uncertainty principle, an expression that predicts the value of the elementary charge is derived.展开更多
Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhed...Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhedral scatterers.展开更多
The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this p...The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this paper, handicap is defined as the difficulty to survive and reproduce independently. Kin sociality is derived from the childhood handicap-care principle where the children are the handicapped children who receive the care from the kin caregivers in the inclusive kin group to survive. The caregiver gives care for its self-interest to reproduce its gene. The individual’s gene of kin sociality contains the handicapped childhood and the caregiving adulthood. Eusociality is derived from the adulthood handicap-care principle where responsible adults are the handicapped adults who give care and receive care at the same time in the interdependent eusocial group to survive and reproduce its gene. Queen bees reproduce, but must receive care from worker bees that work but must rely on queen bees to reproduce. A caregiver gives care for its self-interest to survive and reproduce its gene. The individual’s gene of eusociality contains the handicapped childhood-adulthood and the caregiving adulthood. The chronological sequence of the sociality evolution is individual sociality without handicap, kin sociality with handicapped childhood, and eusociality with handicapped adulthood. Eusociality in humans is derived from bipedalism and the mixed habitat. The chronological sequence of the eusocial human evolution is 1) the eusocial early hominins with bipedalism and the mixed habitat, 2) the eusocial early Homo species with bipedalism, the larger brain, and the open habitat, 3) the eusocial late Homo species with bipedalism, the largest brain, and the unstable habitat, and 4) extended eusocial Homo sapiens with bipedalism, the shrinking brain, omnipresent imagination, and the harsh habitat. The omnipresence of imagination in human culture converts eusociality into extended eusociality with both perception and omnipresent imagination.展开更多
Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous...Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.展开更多
It is demonstrated that the use of Kolmogorov’s probability theory to describe results of quantum probability for EPRB (Einstein-Podolsky-Rosen-Bohm) experiments requires extreme care when different subsets of measur...It is demonstrated that the use of Kolmogorov’s probability theory to describe results of quantum probability for EPRB (Einstein-Podolsky-Rosen-Bohm) experiments requires extreme care when different subsets of measurement outcomes are considered. J. S. Bell and his followers have committed critical inaccuracies related to spin-gauge and probability measures of such subsets, because they use exclusively a single probability space for all data sets and sub-sets of data. It is also shown that Bell and followers use far too stringent epistemological requirements for the consequences of space-like separation. Their requirements reach way beyond Einstein’s separation principle and cannot be met by the major existing physical theories including relativity and even classical mechanics. For example, the independent free will does not empower the experimenters to choose multiple independent spin-gauges in the two EPRB wings. It is demonstrated that the suggestion of instantaneous influences at a distance (supposedly “derived” from experiments with entangled quantum entities) is a consequence of said inaccuracies and takes back rank as soon as the Kolmogorov probability measures are related to a consistent global spin-gauge and permitted to be different for different data subsets: Using statistical interpretations and different probability spaces for certain subsets of outcomes instead of probability amplitudes related to single quantum entities, permits physical explanations without a violation of Einstein’s separation principle.展开更多
This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Ca...This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Caristi’s fixed point theorem.The results stated in this paper improve and strengthen the corresponding results in[4].展开更多
This article obtains an explicit expression of the heat kernels on H-type groups and then follow the estimate of heat kernels to deduce the Hardy's uncertainty principle on the nilpotent Lie groups.
The aim of this paper is to establish an extension of qualitative and quantitative uncertainty principles for the Fourier transform connected with the spherical mean operator.
Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and at...Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and atmospheric long waves, respectively. The obtained variational principles have also been proved to be correct.展开更多
In this note we announce the global boundedness for the solutions to a class of possibly degenerate parabolic equations by De-Giorgi’s iteration.In particular,the existence of weak solutions for possibly degenerate s...In this note we announce the global boundedness for the solutions to a class of possibly degenerate parabolic equations by De-Giorgi’s iteration.In particular,the existence of weak solutions for possibly degenerate stochastic differential equations with singular diffusion coefficients is obtained.展开更多
In this paper we investigate optimal control problems governed by a advection-diffusion-reaction equation. We present a method for deriving conditions in the form of Pontryagin’s principle. The main tools used are th...In this paper we investigate optimal control problems governed by a advection-diffusion-reaction equation. We present a method for deriving conditions in the form of Pontryagin’s principle. The main tools used are the Ekeland’s variational principle combined with penalization and spike variation techniques.展开更多
基金supported by Program of curriculum ideological and political education teaching reform,Zhoukou Normal University-Research on the Path of Ideological and Political Construction of College English Course in local universities from the perspective of cultural confidence(Fund No.SZJG-2022004)Program of Educational Curriculum Reform Henan Province-The exploration of the cultivation of the mentors in normal universities under the background of teacher professional certification(Fund No.2022-JSJYZD-028)+1 种基金the research and practice program of teaching and learning in Zhoukou Normal University(Fund No.JF2021016)achievements of the training program for young and middle-aged key teachers at Zhoukou Normal University in 2021.
文摘Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chinese culture.Taking Tyler’s curriculum framework as the starting point,this paper analyzes some factors that affect the integration of Chinese culture into the college English teaching and proposes some strategies for the integration of Chinese culture into college English teaching by innovating teaching objectives,enriching teaching contents,transforming modes of course delivery,and reconstructing the assessment system.
文摘The work analyzes the basic assumption in Mach’s principle, namely that the inertia of material bodies is determined by their gravitational interaction with distant masses in the universe. However, while Mach’s principle is based on the so-called “long-range gravitational interaction” characterized by an infinitely large propagation velocity, our study is based on a “modified” long-range principle, assuming a very large but finite propagation velocity of the gravitational interaction between local material objects and distant matter. Thus, it is postulated that there are two types of gravitational interaction—short-range gravitational interaction between local objects and long-range gravitational interaction between local objects and distant matter in the universe, which are characterized by different propagation speeds, but with the same gravitational constant. On the basis of the modified long-range principle, a model of distant matter is built in the form of a hollow spherical layer with negligible thickness. The phenomenological assumption is made that the movement with acceleration of the local reference frame (RF) is related to a change in the spherically symmetric distribution of the lines of gravitational interaction of this RF with distant matter, which is expressed in a corresponding asymmetric distribution of the effective mass density on the hollow sphere. A simplified (idealized) model of the effective change of the hollow sphere of distant matter by cutting off separate segments of the sphere is proposed. On the basis of the model, the possibility of representing the inertial effects in three simplest types of reference frames through a corresponding gravitational interaction is considered: 1) inertial RF;2) RF moving in a straight line with constant acceleration;3) RF rotating with constant angular velocity. Expressions were obtained for the gravitational accelerations acting on the test body located inside the hollow sphere with a corresponding change (“cutting”). It is concluded that these accelerations can in a first approximation represent the inertial accelerations of the main types noted above. It is shown that in order to obtain reasonable values of the truncation parameters of the hollow sphere, it is necessary to assume that the gravitational interaction inside this sphere is not of the Newtonian type, i.e. the same depends on the distance not according to the law 1/r2, but according to modified law with a non-integer (fractional) exponent. This law corresponds to a fractal structure of the source of attraction inside the truncated sphere of distant matter. The issue of the possibility of the supposed modified long-range interaction is briefly discussed on the basis of a comparison of the finding a connection with the lines of force of the same with the “cosmic strings” assumed by a number of researchers, along which corresponding excitations (waves, particles) moving at super-light speed. The work advances the idea of the presence of unity and at the same time oppositeness of the inertia of material objects and the known gravitational interaction between them, which are generated by the properties of symmetry of the long-range gravitational interaction. Moreover, while the inertia of the bodies is due to the violation of this symmetry caused by their movement with acceleration, the gravitational interaction between the bodies is due to the aspiration to restore the symmetry of a far-reaching gravitational interaction, which is disturbed by the presence of local material bodies. In the conclusion of the work, the important physico-philosophical significance of Mach’s principle is emphasized, expressed in the understanding that not only the world of microscopic objects (“micro-world”), but also the world of huge cosmic objects (“mega-world”) can have a corresponding impact on our “macroscopic” world.
基金This work was supported by the National Natu- ral Science Foundation of China (No.21004009) and the Foundation of Jiangxi Educational Committee (No.G J J13447 and No.G J J14485). We are grateful to High Performance Computer Center of State Key Lab- oratory of Physical Chemistry of Solid Surface (Xiamen University).
文摘Spin-polarized periodic density functional theory was performed to characterize H2S adsorp- tion and dissociation on graphene oxides (GO) surface. The comprehensive reaction network of H2S oxidation with epoxy and hydroxyl groups of GO was discussed. It is shown that the reduction reaction is mainly governed by epoxide ring opening and hydroxyl hydrogenation which is initiated by H transfer from H2S or its derivatives, hlrthermore, the presence of another OH group at the opposite side relative to the adsorbed H2S activates the oxygen group to facilitate epoxide ring opening and hydroxyl hydrogenation. For H2S interaction with -O and -OH groups adsorption on each side of graphene, the pathway is a favorable reaction path by the introduction of intermediate states, the predicted energy barriers are 3.2 and 10.4 kcal/mol, respectively, the second H transfer is tile rate-determining step in the whole reaction process. In addition, our calculations suggest that both epoxy and hydroxyl groups can enhance tile binding of S to the C-C bonds and the effect of hydroxyl group is more local than that of the epoxy.
文摘Hemingway established a well-known literary theory - iceberg principle.He said he always attempted to create his literary works according to this principle.In his opinion,if a prose writer has a pretty clear idea of what he writes about,then he can omit the things he knows,and the readers will strongly feel that what the writer has omitted seems to have been written as long as what he writes is authentic.Hemingway himself once said,"The dignity of movement of an iceberg is due to only one eighth of it being above water."Here,one eighth refers to the information given by the author,and the rest refers to the unwrit ten information that can be acquired in readers'imagination on the basis of the one eighth.The Killers is a good example of Hemingway's iceberg principle.This essay will analyse the characters in it to show how the principle was used in this short story.With no doubt the iceberg principle leaves a large space for the readers to imagine and better understand Hemingway's works.
基金Supported by the National Natural Science Foundation of China(10871141)
文摘By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.
基金supported by the National Natural Science Foundations of China (Nos. 11972241,11572212,11272227)the Natural Science Foundation of Jiangsu Province(No. BK20191454).
文摘This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian mechanics and Birkhoffian mechanics as three research frames,we introduce Herglotz’s generalized variational principle,dynamical equations of Herglotz type,Noether symmetry and conserved quantities,and their generalization to time-delay dynamics,fractional dynamics and time-scale dynamics,and put forward some problems as suggestions for future research.
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.
基金Supported by the National Natural Science Foundation of China(10972151,11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(CXZZ11_0949)the Innovation Program for Postgraduate of Suzhou University of Science and Technology(SKCX11S_050)
文摘The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is necessary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system.Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics,and its core is the Pfaff-Birkhoff principle and Birkhoff′s equations.The study on the Birkhoffian mechanics is an important developmental direction of modern analytical mechanics.Here,the fractional Pfaff-Birkhoff variational problem is presented and studied.The definitions of fractional derivatives,the formulae for integration by parts and some other preliminaries are firstly given.Secondly,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff′s equations in terms of RieszRiemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively.Finally,an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (11061023)
文摘In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.
文摘The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equations derived thus are used to evaluate the energy, momentum and the action associated with the radiation. The results show that for a charged particle moving with speed ν, the longitudinal momentum associated with the transition radiation is approximately equal to ΔU/c for values of ?1- ν/c smaller than about 10-3 where ΔU is the total radiated energy dissipated during the interaction and cis the speed of light in free space. The action of the radiation, defined as the product of the total energy dissipated and the duration of the emission, increases as 1- ν/c decreases and, for an electron, it becomes equal to h/4π when ν = c - νm where νm is the speed pertinent to the lowest possible momentum associated with a particle confined inside the universe and?h is the Planck constant. Combining these results with Heisenberg’s uncertainty principle, an expression that predicts the value of the elementary charge is derived.
基金supported by NSF grant,FRG DMS 0554571supported substantially by Hong Kong RGC grant (Project 404407)partially by Cheung Kong Scholars Programme through Wuhan University,China.
文摘Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhedral scatterers.
文摘The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this paper, handicap is defined as the difficulty to survive and reproduce independently. Kin sociality is derived from the childhood handicap-care principle where the children are the handicapped children who receive the care from the kin caregivers in the inclusive kin group to survive. The caregiver gives care for its self-interest to reproduce its gene. The individual’s gene of kin sociality contains the handicapped childhood and the caregiving adulthood. Eusociality is derived from the adulthood handicap-care principle where responsible adults are the handicapped adults who give care and receive care at the same time in the interdependent eusocial group to survive and reproduce its gene. Queen bees reproduce, but must receive care from worker bees that work but must rely on queen bees to reproduce. A caregiver gives care for its self-interest to survive and reproduce its gene. The individual’s gene of eusociality contains the handicapped childhood-adulthood and the caregiving adulthood. The chronological sequence of the sociality evolution is individual sociality without handicap, kin sociality with handicapped childhood, and eusociality with handicapped adulthood. Eusociality in humans is derived from bipedalism and the mixed habitat. The chronological sequence of the eusocial human evolution is 1) the eusocial early hominins with bipedalism and the mixed habitat, 2) the eusocial early Homo species with bipedalism, the larger brain, and the open habitat, 3) the eusocial late Homo species with bipedalism, the largest brain, and the unstable habitat, and 4) extended eusocial Homo sapiens with bipedalism, the shrinking brain, omnipresent imagination, and the harsh habitat. The omnipresence of imagination in human culture converts eusociality into extended eusociality with both perception and omnipresent imagination.
文摘Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.
文摘It is demonstrated that the use of Kolmogorov’s probability theory to describe results of quantum probability for EPRB (Einstein-Podolsky-Rosen-Bohm) experiments requires extreme care when different subsets of measurement outcomes are considered. J. S. Bell and his followers have committed critical inaccuracies related to spin-gauge and probability measures of such subsets, because they use exclusively a single probability space for all data sets and sub-sets of data. It is also shown that Bell and followers use far too stringent epistemological requirements for the consequences of space-like separation. Their requirements reach way beyond Einstein’s separation principle and cannot be met by the major existing physical theories including relativity and even classical mechanics. For example, the independent free will does not empower the experimenters to choose multiple independent spin-gauges in the two EPRB wings. It is demonstrated that the suggestion of instantaneous influences at a distance (supposedly “derived” from experiments with entangled quantum entities) is a consequence of said inaccuracies and takes back rank as soon as the Kolmogorov probability measures are related to a consistent global spin-gauge and permitted to be different for different data subsets: Using statistical interpretations and different probability spaces for certain subsets of outcomes instead of probability amplitudes related to single quantum entities, permits physical explanations without a violation of Einstein’s separation principle.
文摘This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Caristi’s fixed point theorem.The results stated in this paper improve and strengthen the corresponding results in[4].
基金supported by National Science Foundation of China (10571044)
文摘This article obtains an explicit expression of the heat kernels on H-type groups and then follow the estimate of heat kernels to deduce the Hardy's uncertainty principle on the nilpotent Lie groups.
文摘The aim of this paper is to establish an extension of qualitative and quantitative uncertainty principles for the Fourier transform connected with the spherical mean operator.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61070041 and 40775064)
文摘Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and atmospheric long waves, respectively. The obtained variational principles have also been proved to be correct.
基金National Natural Science Foundation of China(11731009).
文摘In this note we announce the global boundedness for the solutions to a class of possibly degenerate parabolic equations by De-Giorgi’s iteration.In particular,the existence of weak solutions for possibly degenerate stochastic differential equations with singular diffusion coefficients is obtained.
文摘In this paper we investigate optimal control problems governed by a advection-diffusion-reaction equation. We present a method for deriving conditions in the form of Pontryagin’s principle. The main tools used are the Ekeland’s variational principle combined with penalization and spike variation techniques.