The stability of an inner dump slope was investigated under the efect of coal pillar support considering the development position of dumping.Based on the instability mechanism and load distribution characteristics of ...The stability of an inner dump slope was investigated under the efect of coal pillar support considering the development position of dumping.Based on the instability mechanism and load distribution characteristics of the supporting coal pillar,the three-dimensional mechanical efects of the supporting coal pillar are characterized.Using the two-dimensional equivalent principle and the residual thrust method,the stability of the inner dump slope was analyzed under the efect of pillar support at diferent dump development positions.The quantitative efects of various factors on the inner dump slope stability were revealed,and the coal pillar shape parameters were optimized through numerical simulations.The results indicate that the slope stability coefcient is linearly related to the top width and height of the coal pillar,slope angle,and base inclination angle,and has an exponential relation with the coal pillar strike length and slope height increment.There are quadratic and absolute value relations with the coal pillar outer and the inner bottom angle,respectively.The top width of the coal pillar in the inner dump of Shengli East No.2 open-pit coal mine should be at a level of+824 m,and the optimal top width and height are 15 and 36.7 m,respectively.The instability mechanism of the supporting and retaining coal pillar obtained by numerical simulations and the stability of the inner dump are in good agreement with the theoretical analysis.Our results provide a theoretical basis for the design,treatment,and safe implementation of similar open-pit mine slope engineering.展开更多
This study compared the physicochemical parameters and heavy metal levels in soil samples from selected anthropogenic sites within Enugu metropolis, Enugu State, Nigeria using standard analytical methods. Soil samples...This study compared the physicochemical parameters and heavy metal levels in soil samples from selected anthropogenic sites within Enugu metropolis, Enugu State, Nigeria using standard analytical methods. Soil samples at depths (0 - 20 cm) and (20 - 40 cm) were collected from waste dump sites, metal scrap dumps, fuel filling stations and auto-mechanic workshops and analyzed for physicochemical characteristics and heavy metal levels. Atomic absorption spectrophotometer was used for heavy metal determination while conventional analytical methods were employed for physicochemical parameters evaluation of the soil samples. At soil depths 0 - 20 cm and 20 - 40 cm the respective mean range of pH, electrical conductivity, organic matter and organic carbon contents in the soil samples were, 6.33 - 6.74, 101.46 - 123.21 <em>μ</em>S/cm, 6.41% - 8.35% and 13.73% - 16.14% for auto-mechanic workshops;6.92 - 7.43, 56.46 - 60.02 <em>μ</em>S/cm, 1.53% - 2.20% and 11.93% - 12.60% for fuel filling stations;7.14 - 7.84, 70.81 - 77.71 <em>μ</em>S/cm, 3.81% - 4.12% and 8.57% - 9.24% for metal scrap dumps;6.54 - 6.81, 94.40 - 100.71 <em>μ</em>S/cm, 8.83% - 10.75% and 18.26% - 20.81% for waste dump sites. The pH of the top soil samples from auto-mechanical workshop was below the WHO recommended limits for agricultural purposes. The physic-chemical characteristics of the soil samples decreased with soil depths indicating therefore that anthropogenic activities greatly influence the soil characteristics at the top soils than the sub-soils. The electrical conductivity values of top and sub-soil samples from the studied auto-mechanical workshops were above the recommended limits. At soil depths 0 - 20 cm and 20 - 40 cm, the respective mean range of Zn, Pb and Cd in the soil samples were 17.29 - 19.16 <em>μ</em>g/g, 0.704 - 0.96 <em>μ</em>g/g and 0.26 - 0.33 <em>μ</em>g/g for auto-mechanic workshops;4.13 - 4.88 <em>μ</em>g/g, 0.21 - 0.32 <em>μ</em>g/g and 0.03 - 0.11 <em>μ</em>g/g for fuel filling stations;30.02 - 36.11 <em>μ</em>g/g, 0.43 - 0.48 <em>μ</em>g/g and 0.15 - 0.19 <em>μ</em>g/g for metal scrap dumps;9.30 - 10.84 <em>μ</em>g/g, 0.53 - 0.60 <em>μ</em>g/g and 0.38 - 0.45 <em>μ</em>g/g for waste dump sites. The mean levels of Pb in soil samples from mechanic workshops and waste dump sites were above the recommended permissible limits for agricultural purposes. The study therefore indicated that these sites (auto-mechanic workshops and waste dump sites) could be major sources of Pb pollution to nearby farmlands, streams and the general environment. Plants grown on or around these sites may not produce high yields and could be severely contaminated with heavy metals which portend health danger to food consumers within the environment.展开更多
基金supported by the National Natural Science Foundation of China(51874160)Liaoning BaiQianWan Talents Program,and Discipline Innovation Team of Liaoning Technical University(LNTU20TD-01).
文摘The stability of an inner dump slope was investigated under the efect of coal pillar support considering the development position of dumping.Based on the instability mechanism and load distribution characteristics of the supporting coal pillar,the three-dimensional mechanical efects of the supporting coal pillar are characterized.Using the two-dimensional equivalent principle and the residual thrust method,the stability of the inner dump slope was analyzed under the efect of pillar support at diferent dump development positions.The quantitative efects of various factors on the inner dump slope stability were revealed,and the coal pillar shape parameters were optimized through numerical simulations.The results indicate that the slope stability coefcient is linearly related to the top width and height of the coal pillar,slope angle,and base inclination angle,and has an exponential relation with the coal pillar strike length and slope height increment.There are quadratic and absolute value relations with the coal pillar outer and the inner bottom angle,respectively.The top width of the coal pillar in the inner dump of Shengli East No.2 open-pit coal mine should be at a level of+824 m,and the optimal top width and height are 15 and 36.7 m,respectively.The instability mechanism of the supporting and retaining coal pillar obtained by numerical simulations and the stability of the inner dump are in good agreement with the theoretical analysis.Our results provide a theoretical basis for the design,treatment,and safe implementation of similar open-pit mine slope engineering.
文摘This study compared the physicochemical parameters and heavy metal levels in soil samples from selected anthropogenic sites within Enugu metropolis, Enugu State, Nigeria using standard analytical methods. Soil samples at depths (0 - 20 cm) and (20 - 40 cm) were collected from waste dump sites, metal scrap dumps, fuel filling stations and auto-mechanic workshops and analyzed for physicochemical characteristics and heavy metal levels. Atomic absorption spectrophotometer was used for heavy metal determination while conventional analytical methods were employed for physicochemical parameters evaluation of the soil samples. At soil depths 0 - 20 cm and 20 - 40 cm the respective mean range of pH, electrical conductivity, organic matter and organic carbon contents in the soil samples were, 6.33 - 6.74, 101.46 - 123.21 <em>μ</em>S/cm, 6.41% - 8.35% and 13.73% - 16.14% for auto-mechanic workshops;6.92 - 7.43, 56.46 - 60.02 <em>μ</em>S/cm, 1.53% - 2.20% and 11.93% - 12.60% for fuel filling stations;7.14 - 7.84, 70.81 - 77.71 <em>μ</em>S/cm, 3.81% - 4.12% and 8.57% - 9.24% for metal scrap dumps;6.54 - 6.81, 94.40 - 100.71 <em>μ</em>S/cm, 8.83% - 10.75% and 18.26% - 20.81% for waste dump sites. The pH of the top soil samples from auto-mechanical workshop was below the WHO recommended limits for agricultural purposes. The physic-chemical characteristics of the soil samples decreased with soil depths indicating therefore that anthropogenic activities greatly influence the soil characteristics at the top soils than the sub-soils. The electrical conductivity values of top and sub-soil samples from the studied auto-mechanical workshops were above the recommended limits. At soil depths 0 - 20 cm and 20 - 40 cm, the respective mean range of Zn, Pb and Cd in the soil samples were 17.29 - 19.16 <em>μ</em>g/g, 0.704 - 0.96 <em>μ</em>g/g and 0.26 - 0.33 <em>μ</em>g/g for auto-mechanic workshops;4.13 - 4.88 <em>μ</em>g/g, 0.21 - 0.32 <em>μ</em>g/g and 0.03 - 0.11 <em>μ</em>g/g for fuel filling stations;30.02 - 36.11 <em>μ</em>g/g, 0.43 - 0.48 <em>μ</em>g/g and 0.15 - 0.19 <em>μ</em>g/g for metal scrap dumps;9.30 - 10.84 <em>μ</em>g/g, 0.53 - 0.60 <em>μ</em>g/g and 0.38 - 0.45 <em>μ</em>g/g for waste dump sites. The mean levels of Pb in soil samples from mechanic workshops and waste dump sites were above the recommended permissible limits for agricultural purposes. The study therefore indicated that these sites (auto-mechanic workshops and waste dump sites) could be major sources of Pb pollution to nearby farmlands, streams and the general environment. Plants grown on or around these sites may not produce high yields and could be severely contaminated with heavy metals which portend health danger to food consumers within the environment.