In order to explore the effects of moisture content and plasticity index on Duncan-Chang model parameters?K,n,?C?and?Rf,?we selected 8 groups of soft soil with water content of 69.1%?-?94.3% and plasticity index of 32...In order to explore the effects of moisture content and plasticity index on Duncan-Chang model parameters?K,n,?C?and?Rf,?we selected 8 groups of soft soil with water content of 69.1%?-?94.3% and plasticity index of 32.2?-?54.1 for triaxial unconsolidated undrained shear test. The results show that?Cuu,?K?and?n?values all showed a downward trend, and?Rf?variation was not obvious with the increase of moisture content. The variation rule of each parameter is not obvious with the increase of plasticity index. When moisture content is constant,?Cuu?and?n?values do not change much,?K?increases with the increase of plasticity index within the range of 70%?-?80% moisture content, and does not change much with the increase of plasticity index when moisture content is greater than 80%,?Rf?has no obvious rule.?When the plasticity index is constant,?Cuu,?Kand?n?decrease with the increase of moisture content,?Rf?has no obvious rule. The maximum value of?Cuu?is 20.18?kPa, the minimum is 3.72?kPa, and the maximum to minimum ratio is 5.42. The maximum value of?K?is 0.517, the minimum is 0.022, and the maximum to minimum ratio is 23.5. The maximum value of?n?is 1.198, the minimum is 0.150, and the maximum to minimum ratio is 7.99. The maximum value of?Rf?is 0.872, the minimum is 0.679, and the maximum to minimum ratio is 1.28.展开更多
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o...Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .展开更多
The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to est...The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation.展开更多
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net...The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.展开更多
On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness...On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment.展开更多
The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as b...The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.展开更多
Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes ...Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.展开更多
AGB (aboveground fresh biomass) is one of the most important parameters of the crop condition monitored with remote sensing. Hyper spectrum remote sensing with the fine spectrum information becomes the efficient met...AGB (aboveground fresh biomass) is one of the most important parameters of the crop condition monitored with remote sensing. Hyper spectrum remote sensing with the fine spectrum information becomes the efficient method estimating the vegetation AGB. The research was conducted in Xinjiang, the largest cotton planting region of China. The paper analyzed the correlation between the cotton AGB and reflective spectrum and the first derivative spectrum, and the variation coefficient of the waveband reflectance. According to the analysis above, all of 23 parameters, including the hyper spectrum reflectance, the first derivative spectrum parameters and normalization vegetation indexes, were established. And then the estimation models on cotton AGB of relaxing and compact canopy type were established and tested respectively. The tested results showed that Fgo1, [901,502], [901,629], [901,672] among the reflective spectral parameters and D525, D956, D1019, D1751 among the first derivative spectral parameters had the homogenous effect on different cotton canopy types, and the determination coefficients of the models above all arrive at the significant level of 0.99 confidence interval. At last, the tested results of the homogeneity models for different canopy types indicated the parameters of [901, 502], [901,629], [901,672] have more satisfying veracity than others, and the relative errors are as low as 17.0, 16.3 and 16.7% correspondingly; in contrast, the estimation veracity of the first derivative spectrum parameters of single waveband is low.展开更多
By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain a...By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain and deformation in adiabatic shear band(ASB)were analyzed.The peak local plastic shear strain is proportional to the average plastic shear strain,while it is inversely proportional to the critical plastic shear strain corresponding to the peak flow shear stress.The relative plastic shear deformation between the top and base of ASB depends on the thickness of ASB and the average plastic shear strain.A parametric study was carried out to study the influence of constitutive parameters on shear strain localization.Higher values of static shear strength and work to heat conversion factor lead to lower critical plastic shear strain so that the shear localization is more apparent at the same average plastic shear strain.Higher values of strain-hardening exponent,strain rate sensitive coefficient,melting point,thermal capacity and mass density result in higher critical plastic shear strain,leading to less apparent shear localization at the same average plastic shear strain.The strain rate sensitive coefficient has a minor influence on the critical plastic shear strain,the distributions of local plastic shear strain and deformation in ASB.The effect of strain-hardening modulus on the critical plastic shear strain is not monotonous.When the maximum critical plastic shear strain is reached,the least apparent shear localization occurs.展开更多
The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identific...The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identification methods usually relies either solely nonlinear iterative algorithms or manually trial and error. Therefore, the identification process can be rather time consuming and effort taking. As a result, these methods are not ideal for engineering applications. To come up with a more practical method, a three-stage identification method is proposed. Periodic loading and identification simulations are carried out to verify the effectiveness of the proposed method. Noises are added to the simulated data to test the performance of the proposed method when dealing with noise contaminated data. The simulation results indicate that the proposed method is able to give satisfying results when the noise levels are set to be 0.01, 0.03, 0.05 and 0.07. In addition, the proposed method is also applied to experimental data and compared with an existing method. The experimental data is acquired through a periodic loading test. The experiment results suggest that the proposed method features better accuracy compared with the existing method. An effective approach is proposed for identifying the model parameters of the stranded wire helical spring.展开更多
In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, the...In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature for- mulas for corresponding model parameters. The proposed method is validated by a 1x 0.2 x 16 μm2 SiGe HBT over a wide temperature range (from 218 K to 473 K), and good matching is obtained between the extracted and modeled resuits. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.展开更多
Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, ...Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, etc. A method is presented to simulate the joint parameters as probabilistic variables. In this method the response surface based model updating method and probabilistic approaches are employed to identify the parameters. The study implies that joint parameters of some structures have normal or nearly normal distributions, and a linear FE model with probabilistic variables could illustrate dynamic characteristics of joints.展开更多
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and ra...The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.展开更多
In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental ...In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates.展开更多
Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters w...Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters were analyzed using FiSAT II software. Five species had isometric growth, two species had negative allometric growth, and one species had positive allometric growth. Overall, the exploitation rates of the eight species were lower in 2006 2007 than in 1997-1999: for four species (Saurida tumbil, Saurida undosquamis, Argyrosomus macrocephalus, and Nemipterus virgatus) it was lower in 2006-2007 than in 1997 1999, for two species (Parargyrops edita and Trichiurus haumela) it remained the same, and for the other two species (Trachurus japonicus and Decapterus maruadsi) it was higher in 2006~007 than in 1997-1999. The exploitation rates might have declined because of the decline in fishing intensity caused by high crude oil prices. The optimum exploitation rate, estimated using Beverton-Holt dynamic pool models, indicated that although fishes in the Beibu Gulf could sustain high exploitation rates, the under-size fishes at first capture resulted in low yields. To increase the yield per recruitment, it is more effective to increase the size at first capture than to control fishing effort.展开更多
The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these pa...The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.展开更多
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive...To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.展开更多
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The glob...Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The global effect of FMD is most felt where livestock rearing forms an important source of income.It is therefore important to understand the modes of transmission of FMD to control its spread and prevent its occurrence.This work intends to address these dynamics by including the efficacy of active migrant animals transporting the disease from one area to another in a fuzzy mathematical modeling framework.Historical models of epidemics are determinable with a set of deterministic parameters and this does not reflect on real-life scenarios as observed in FMD.Fuzzy theory is used in this model as it permits the inclusion of uncertainties in the model;this makes the model more of a reality regarding disease transmission.A time lag,in this case,denotes the incubation period and other time-related factors affecting the spread of FMD and,therefore,is added to the current model for FMD.To that purpose,the analysis of steady states and the basic reproduction number are performed and,in addition,the stability checks are conveyed in the fuzzy environment.For the numerical solution of the model,we derive the Forward Euler Method and the fuzzy delayed non-standard finite difference(FDNSFD)method.Analytical studies of the FDNSFD scheme are performed for convergence,non-negativity,boundedness,and consistency analysis of the numerical projection to guarantee that the numerical model is an accurate discretization of the continuous dynamics of FMD transmission over time.In the following simulation study,we show that the FDNSFD method preserves the characteristics of the constant model and still works if relatively large time steps are employed;this is a bonus over the normal finite difference technique.The study shows how valuable it is to adopt fuzzy theory and time delays when simulating the transmission of the epidemic,especially for such diseases as FMD where uncertainty and migration have a defining role in transmission.This approach gives more sound and flexible grounds for analyzing and controlling the outbreak of FMD in various situations.展开更多
文摘In order to explore the effects of moisture content and plasticity index on Duncan-Chang model parameters?K,n,?C?and?Rf,?we selected 8 groups of soft soil with water content of 69.1%?-?94.3% and plasticity index of 32.2?-?54.1 for triaxial unconsolidated undrained shear test. The results show that?Cuu,?K?and?n?values all showed a downward trend, and?Rf?variation was not obvious with the increase of moisture content. The variation rule of each parameter is not obvious with the increase of plasticity index. When moisture content is constant,?Cuu?and?n?values do not change much,?K?increases with the increase of plasticity index within the range of 70%?-?80% moisture content, and does not change much with the increase of plasticity index when moisture content is greater than 80%,?Rf?has no obvious rule.?When the plasticity index is constant,?Cuu,?Kand?n?decrease with the increase of moisture content,?Rf?has no obvious rule. The maximum value of?Cuu?is 20.18?kPa, the minimum is 3.72?kPa, and the maximum to minimum ratio is 5.42. The maximum value of?K?is 0.517, the minimum is 0.022, and the maximum to minimum ratio is 23.5. The maximum value of?n?is 1.198, the minimum is 0.150, and the maximum to minimum ratio is 7.99. The maximum value of?Rf?is 0.872, the minimum is 0.679, and the maximum to minimum ratio is 1.28.
文摘Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .
基金Project(2014CB046704)supported by the National Basic Research Program of ChinaProject(2014BAB13B01)supported by the National Science and Technology Pillar Program of China
文摘The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation.
文摘The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.
基金Supported by National Natural Science Foundation of China(Grant No.51805141)Funds for Creative Research Groups of Hebei Province of China(Grant No.E2020202142)+2 种基金Tianjin Municipal Science and Technology Plan Project of China(Grant No.19ZXZNGX00100)Key R&D Program of Hebei Province of China(Grant No.19227208D)National Key Research and development Program of China(Grant No.2020YFB2009400).
文摘On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment.
文摘The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.
基金funded by a grant from Natural Sciences and Engineering Research Council of Canada (NSERC)the authors would like to acknowledge the Niobec mine (Saint-Honoré, QuébecQuébec)
文摘Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.
文摘AGB (aboveground fresh biomass) is one of the most important parameters of the crop condition monitored with remote sensing. Hyper spectrum remote sensing with the fine spectrum information becomes the efficient method estimating the vegetation AGB. The research was conducted in Xinjiang, the largest cotton planting region of China. The paper analyzed the correlation between the cotton AGB and reflective spectrum and the first derivative spectrum, and the variation coefficient of the waveband reflectance. According to the analysis above, all of 23 parameters, including the hyper spectrum reflectance, the first derivative spectrum parameters and normalization vegetation indexes, were established. And then the estimation models on cotton AGB of relaxing and compact canopy type were established and tested respectively. The tested results showed that Fgo1, [901,502], [901,629], [901,672] among the reflective spectral parameters and D525, D956, D1019, D1751 among the first derivative spectral parameters had the homogenous effect on different cotton canopy types, and the determination coefficients of the models above all arrive at the significant level of 0.99 confidence interval. At last, the tested results of the homogeneity models for different canopy types indicated the parameters of [901, 502], [901,629], [901,672] have more satisfying veracity than others, and the relative errors are as low as 17.0, 16.3 and 16.7% correspondingly; in contrast, the estimation veracity of the first derivative spectrum parameters of single waveband is low.
基金Project(2004F052) supported by the Education Department of Liaoning Province,China
文摘By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain and deformation in adiabatic shear band(ASB)were analyzed.The peak local plastic shear strain is proportional to the average plastic shear strain,while it is inversely proportional to the critical plastic shear strain corresponding to the peak flow shear stress.The relative plastic shear deformation between the top and base of ASB depends on the thickness of ASB and the average plastic shear strain.A parametric study was carried out to study the influence of constitutive parameters on shear strain localization.Higher values of static shear strength and work to heat conversion factor lead to lower critical plastic shear strain so that the shear localization is more apparent at the same average plastic shear strain.Higher values of strain-hardening exponent,strain rate sensitive coefficient,melting point,thermal capacity and mass density result in higher critical plastic shear strain,leading to less apparent shear localization at the same average plastic shear strain.The strain rate sensitive coefficient has a minor influence on the critical plastic shear strain,the distributions of local plastic shear strain and deformation in ASB.The effect of strain-hardening modulus on the critical plastic shear strain is not monotonous.When the maximum critical plastic shear strain is reached,the least apparent shear localization occurs.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375508,51375517)the Key Technologies R&D Program of China(Grant No.2012BAF12B09)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT1196)
文摘The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identification methods usually relies either solely nonlinear iterative algorithms or manually trial and error. Therefore, the identification process can be rather time consuming and effort taking. As a result, these methods are not ideal for engineering applications. To come up with a more practical method, a three-stage identification method is proposed. Periodic loading and identification simulations are carried out to verify the effectiveness of the proposed method. Noises are added to the simulated data to test the performance of the proposed method when dealing with noise contaminated data. The simulation results indicate that the proposed method is able to give satisfying results when the noise levels are set to be 0.01, 0.03, 0.05 and 0.07. In addition, the proposed method is also applied to experimental data and compared with an existing method. The experimental data is acquired through a periodic loading test. The experiment results suggest that the proposed method features better accuracy compared with the existing method. An effective approach is proposed for identifying the model parameters of the stranded wire helical spring.
基金supported partially by the Important National Science&Technology Specific Projects,China(Grant No.2013ZX02503003)
文摘In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature for- mulas for corresponding model parameters. The proposed method is validated by a 1x 0.2 x 16 μm2 SiGe HBT over a wide temperature range (from 218 K to 473 K), and good matching is obtained between the extracted and modeled resuits. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.
文摘Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, etc. A method is presented to simulate the joint parameters as probabilistic variables. In this method the response surface based model updating method and probabilistic approaches are employed to identify the parameters. The study implies that joint parameters of some structures have normal or nearly normal distributions, and a linear FE model with probabilistic variables could illustrate dynamic characteristics of joints.
基金Project supported by the National Natural Science Foundation of China (No.40571115)the National High Tech-nology Research and Development Program (863 Program) of China (Nos.2006AA120101 and 2007AA10Z205)
文摘The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951102)the National Supporting Plan Program of China (Grants No.2007BAB28B01 and 2008BAB42B03)the National Natural Science Foundation of China (Grant No. 50709042),and the Regional Water Theme in the Water for a Healthy Country Flagship
文摘In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates.
基金Supported by the Chinese Ministry of Agriculture under the Investigation of Fishery Stocks in China Seas Program (No. 070404)the Special Project of the Social Commonwealth Research National Institute (Nos.2009TS08, 2010YD10)
文摘Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters were analyzed using FiSAT II software. Five species had isometric growth, two species had negative allometric growth, and one species had positive allometric growth. Overall, the exploitation rates of the eight species were lower in 2006 2007 than in 1997-1999: for four species (Saurida tumbil, Saurida undosquamis, Argyrosomus macrocephalus, and Nemipterus virgatus) it was lower in 2006-2007 than in 1997 1999, for two species (Parargyrops edita and Trichiurus haumela) it remained the same, and for the other two species (Trachurus japonicus and Decapterus maruadsi) it was higher in 2006~007 than in 1997-1999. The exploitation rates might have declined because of the decline in fishing intensity caused by high crude oil prices. The optimum exploitation rate, estimated using Beverton-Holt dynamic pool models, indicated that although fishes in the Beibu Gulf could sustain high exploitation rates, the under-size fishes at first capture resulted in low yields. To increase the yield per recruitment, it is more effective to increase the size at first capture than to control fishing effort.
基金supported by Important National Science & Technology Specific Projects of China (No.2) (Nos.2009ZX02001,2011ZX02403)
文摘The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.
基金Basic Science&Research Foundation of IEM,CEA under Grant No.2013B07International Science&Technology Cooperation Program of China under Grant No.2012DFA70810Natural Science Foundation of China under Grant No.50908216
文摘To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
文摘Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The global effect of FMD is most felt where livestock rearing forms an important source of income.It is therefore important to understand the modes of transmission of FMD to control its spread and prevent its occurrence.This work intends to address these dynamics by including the efficacy of active migrant animals transporting the disease from one area to another in a fuzzy mathematical modeling framework.Historical models of epidemics are determinable with a set of deterministic parameters and this does not reflect on real-life scenarios as observed in FMD.Fuzzy theory is used in this model as it permits the inclusion of uncertainties in the model;this makes the model more of a reality regarding disease transmission.A time lag,in this case,denotes the incubation period and other time-related factors affecting the spread of FMD and,therefore,is added to the current model for FMD.To that purpose,the analysis of steady states and the basic reproduction number are performed and,in addition,the stability checks are conveyed in the fuzzy environment.For the numerical solution of the model,we derive the Forward Euler Method and the fuzzy delayed non-standard finite difference(FDNSFD)method.Analytical studies of the FDNSFD scheme are performed for convergence,non-negativity,boundedness,and consistency analysis of the numerical projection to guarantee that the numerical model is an accurate discretization of the continuous dynamics of FMD transmission over time.In the following simulation study,we show that the FDNSFD method preserves the characteristics of the constant model and still works if relatively large time steps are employed;this is a bonus over the normal finite difference technique.The study shows how valuable it is to adopt fuzzy theory and time delays when simulating the transmission of the epidemic,especially for such diseases as FMD where uncertainty and migration have a defining role in transmission.This approach gives more sound and flexible grounds for analyzing and controlling the outbreak of FMD in various situations.