Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o...Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .展开更多
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness...On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment.展开更多
AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential ...AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential of artificial intelligence(AI)in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.METHODS:Retinal fundus photos from 200 normal individuals,200 prediabetic patients,and 200 diabetic patients(600 eyes in total)were used.The U-Net network served as the foundational architecture for retinal arteryvein segmentation.An automatic segmentation and evaluation system for retinal vascular parameters was trained,encompassing 26 parameters.RESULTS:Significant differences were found in retinal vascular parameters across normal,prediabetes,and diabetes groups,including artery diameter(P=0.008),fractal dimension(P=0.000),vein curvature(P=0.003),C-zone artery branching vessel count(P=0.049),C-zone vein branching vessel count(P=0.041),artery branching angle(P=0.005),vein branching angle(P=0.001),artery angle asymmetry degree(P=0.003),vessel length density(P=0.000),and vessel area density(P=0.000),totaling 10 parameters.CONCLUSION:The deep learning-based model facilitates retinal vascular parameter identification and quantification,revealing significant differences.These parameters exhibit potential as biomarkers for prediabetes and diabetes.展开更多
According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheolog...According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning.展开更多
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different...The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.展开更多
Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization...Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.T...Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.展开更多
We discuss formulas and techniques for finding maximum-likelihood estimators of parameters of autoregressive (with particular emphasis on Markov and Yule) models, computing their asymptotic variance-covariance matrix ...We discuss formulas and techniques for finding maximum-likelihood estimators of parameters of autoregressive (with particular emphasis on Markov and Yule) models, computing their asymptotic variance-covariance matrix and displaying the resulting confidence regions;Monte Carlo simulation is then used to establish the accuracy of the corresponding level of confidence. The results indicate that a direct application of the Central Limit Theorem yields errors too large to be acceptable;instead, we recommend using a technique based directly on the natural logarithm of the likelihood function, verifying its substantially higher accuracy. Our study is then extended to the case of estimating only a subset of a model’s parameters, when the remaining ones (called nuisance) are of no interest to us.展开更多
The effects of the milling parameters involving shape of powder particles, rotation speed, and ball-to-powder diameter (BPDR) on DEM modeling in the planetary ball mill were investigated. BPDR was varied from 1 to 10....The effects of the milling parameters involving shape of powder particles, rotation speed, and ball-to-powder diameter (BPDR) on DEM modeling in the planetary ball mill were investigated. BPDR was varied from 1 to 10. The results revealed that the size and shape of the powder particles do not give a significant change in simulation results when BPDR attains maximum value of 10. The increasing of BPDR leads to the increase of simulation time and size. Hence, the effect of change of the powder particle shape on the calculated data size is not significant. The results also revealed that the increasing rotation speed increases impact energy between powder particles.展开更多
Clastic rock reservoir is the main reservoir type in the oil and gas field.Archie formula or various conductive models developed on the basis of Archie’s formula are usually used to interpret this kind of reservoir,a...Clastic rock reservoir is the main reservoir type in the oil and gas field.Archie formula or various conductive models developed on the basis of Archie’s formula are usually used to interpret this kind of reservoir,and the three-water model is widely used as well.However,there are many parameters in the threewater model,and some of them are difficult to determine.Most of the determination methods are based on the statistics of large amount of experimental data.In this study,the authors determine the value of the parameters of the new three-water model based on the nuclear magnetic data and the genetic optimization algorithm.The relative error between the resistivity calculated based on these parameters and the resistivity measured experimentally at 100%water content is 0.9024.The method studied in this paper can be easily applied without much experimental data.It can provide reference for other regions to determine the parameters of the new three-water model.展开更多
The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to est...The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation.展开更多
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net...The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.展开更多
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv...To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.展开更多
Herein,iron oxide/hydroxides deposits(gossans)were utilized,for the first time,in the fabrication of magnetite nanoparticles(MNPs)to load modified coal(MC).The as-synthesized MNPs@MC composite was characterized via di...Herein,iron oxide/hydroxides deposits(gossans)were utilized,for the first time,in the fabrication of magnetite nanoparticles(MNPs)to load modified coal(MC).The as-synthesized MNPs@MC composite was characterized via different techniques and utilized for the Cr(Ⅵ)remediation.Experimental studies supported by theoretical treatment were applied to offer a new overview of the Cr(Ⅵ)adsorption geometry and mechanism at 25-45℃.Experimental results suggested that the Cr(Ⅵ)uptake was mainly governed by adsorption-reduction coupled mechanism.The Langmuir model fitted well the Cr(Ⅵ)adsorption data with maximum adsorption capacities extended from 115.24 to 129.63 mg·g^(-1).Theoretical calculations indicated that Cr(Ⅵ)ions were adsorbed on the MNPs@MC following the theory of the advanced monolayer statistical model.The number of ions removed per site ranged from 1.88 to1.23 suggesting the involvement of vertical geometry and multi-ionic mechanism at all temperatures.The increment of the active sites density and the adsorption capacity at saturation with improving temperature reflected an endothermic process.Energetically,the Cr(Ⅵ)adsorption was controlled by physical forces as the adsorption energies were less than 40 kJ·mol^(-1).The calculated free enthalpy,entropy.and internal energy explained the spontaneous nature and the viability of Cr(Ⅵ)adsorption on the MNPs@MC adsorbent.These results offer a new approach in utilizing the iron-rich deposits as gossans in the preparation of magnetic and low-cost adsorbents for wastewater remediation.展开更多
The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as b...The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.展开更多
Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes ...Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.展开更多
AGB (aboveground fresh biomass) is one of the most important parameters of the crop condition monitored with remote sensing. Hyper spectrum remote sensing with the fine spectrum information becomes the efficient met...AGB (aboveground fresh biomass) is one of the most important parameters of the crop condition monitored with remote sensing. Hyper spectrum remote sensing with the fine spectrum information becomes the efficient method estimating the vegetation AGB. The research was conducted in Xinjiang, the largest cotton planting region of China. The paper analyzed the correlation between the cotton AGB and reflective spectrum and the first derivative spectrum, and the variation coefficient of the waveband reflectance. According to the analysis above, all of 23 parameters, including the hyper spectrum reflectance, the first derivative spectrum parameters and normalization vegetation indexes, were established. And then the estimation models on cotton AGB of relaxing and compact canopy type were established and tested respectively. The tested results showed that Fgo1, [901,502], [901,629], [901,672] among the reflective spectral parameters and D525, D956, D1019, D1751 among the first derivative spectral parameters had the homogenous effect on different cotton canopy types, and the determination coefficients of the models above all arrive at the significant level of 0.99 confidence interval. At last, the tested results of the homogeneity models for different canopy types indicated the parameters of [901, 502], [901,629], [901,672] have more satisfying veracity than others, and the relative errors are as low as 17.0, 16.3 and 16.7% correspondingly; in contrast, the estimation veracity of the first derivative spectrum parameters of single waveband is low.展开更多
文摘Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
基金Supported by National Natural Science Foundation of China(Grant No.51805141)Funds for Creative Research Groups of Hebei Province of China(Grant No.E2020202142)+2 种基金Tianjin Municipal Science and Technology Plan Project of China(Grant No.19ZXZNGX00100)Key R&D Program of Hebei Province of China(Grant No.19227208D)National Key Research and development Program of China(Grant No.2020YFB2009400).
文摘On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment.
基金Supported by Shenzhen Science and Technology Program(No.JCYJ20220530153604010).
文摘AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential of artificial intelligence(AI)in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.METHODS:Retinal fundus photos from 200 normal individuals,200 prediabetic patients,and 200 diabetic patients(600 eyes in total)were used.The U-Net network served as the foundational architecture for retinal arteryvein segmentation.An automatic segmentation and evaluation system for retinal vascular parameters was trained,encompassing 26 parameters.RESULTS:Significant differences were found in retinal vascular parameters across normal,prediabetes,and diabetes groups,including artery diameter(P=0.008),fractal dimension(P=0.000),vein curvature(P=0.003),C-zone artery branching vessel count(P=0.049),C-zone vein branching vessel count(P=0.041),artery branching angle(P=0.005),vein branching angle(P=0.001),artery angle asymmetry degree(P=0.003),vessel length density(P=0.000),and vessel area density(P=0.000),totaling 10 parameters.CONCLUSION:The deep learning-based model facilitates retinal vascular parameter identification and quantification,revealing significant differences.These parameters exhibit potential as biomarkers for prediabetes and diabetes.
基金support of the Key Research and Development Program of Shandong Province of China(grant no.2021ZLGX01)Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project),China(grant no.2021CXGC010206).
文摘According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning.
基金funded by the National Natural Science Foundation of China(32360321)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2023AAC03046,2023AAC02018)the Ningxia Key Research and Development Project(2021BEG02011).
文摘The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.
基金funded by the National Key Research and Development Program of China(2017YFA0605002,2017YFA0605004,and 2016YFA0601501)the National Natural Science Foundation of China(41961124007,51779145,and 41830863)“Six top talents”in Jiangsu Province(RJFW-031)。
文摘Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
文摘Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.
文摘We discuss formulas and techniques for finding maximum-likelihood estimators of parameters of autoregressive (with particular emphasis on Markov and Yule) models, computing their asymptotic variance-covariance matrix and displaying the resulting confidence regions;Monte Carlo simulation is then used to establish the accuracy of the corresponding level of confidence. The results indicate that a direct application of the Central Limit Theorem yields errors too large to be acceptable;instead, we recommend using a technique based directly on the natural logarithm of the likelihood function, verifying its substantially higher accuracy. Our study is then extended to the case of estimating only a subset of a model’s parameters, when the remaining ones (called nuisance) are of no interest to us.
文摘The effects of the milling parameters involving shape of powder particles, rotation speed, and ball-to-powder diameter (BPDR) on DEM modeling in the planetary ball mill were investigated. BPDR was varied from 1 to 10. The results revealed that the size and shape of the powder particles do not give a significant change in simulation results when BPDR attains maximum value of 10. The increasing of BPDR leads to the increase of simulation time and size. Hence, the effect of change of the powder particle shape on the calculated data size is not significant. The results also revealed that the increasing rotation speed increases impact energy between powder particles.
文摘Clastic rock reservoir is the main reservoir type in the oil and gas field.Archie formula or various conductive models developed on the basis of Archie’s formula are usually used to interpret this kind of reservoir,and the three-water model is widely used as well.However,there are many parameters in the threewater model,and some of them are difficult to determine.Most of the determination methods are based on the statistics of large amount of experimental data.In this study,the authors determine the value of the parameters of the new three-water model based on the nuclear magnetic data and the genetic optimization algorithm.The relative error between the resistivity calculated based on these parameters and the resistivity measured experimentally at 100%water content is 0.9024.The method studied in this paper can be easily applied without much experimental data.It can provide reference for other regions to determine the parameters of the new three-water model.
基金Project(2014CB046704)supported by the National Basic Research Program of ChinaProject(2014BAB13B01)supported by the National Science and Technology Pillar Program of China
文摘The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation.
文摘The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.
基金supported by Researchers Supporting Project number(RSP2023R455),King Saud University,Riyadh,Saudi Arabia。
文摘Herein,iron oxide/hydroxides deposits(gossans)were utilized,for the first time,in the fabrication of magnetite nanoparticles(MNPs)to load modified coal(MC).The as-synthesized MNPs@MC composite was characterized via different techniques and utilized for the Cr(Ⅵ)remediation.Experimental studies supported by theoretical treatment were applied to offer a new overview of the Cr(Ⅵ)adsorption geometry and mechanism at 25-45℃.Experimental results suggested that the Cr(Ⅵ)uptake was mainly governed by adsorption-reduction coupled mechanism.The Langmuir model fitted well the Cr(Ⅵ)adsorption data with maximum adsorption capacities extended from 115.24 to 129.63 mg·g^(-1).Theoretical calculations indicated that Cr(Ⅵ)ions were adsorbed on the MNPs@MC following the theory of the advanced monolayer statistical model.The number of ions removed per site ranged from 1.88 to1.23 suggesting the involvement of vertical geometry and multi-ionic mechanism at all temperatures.The increment of the active sites density and the adsorption capacity at saturation with improving temperature reflected an endothermic process.Energetically,the Cr(Ⅵ)adsorption was controlled by physical forces as the adsorption energies were less than 40 kJ·mol^(-1).The calculated free enthalpy,entropy.and internal energy explained the spontaneous nature and the viability of Cr(Ⅵ)adsorption on the MNPs@MC adsorbent.These results offer a new approach in utilizing the iron-rich deposits as gossans in the preparation of magnetic and low-cost adsorbents for wastewater remediation.
文摘The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.
基金funded by a grant from Natural Sciences and Engineering Research Council of Canada (NSERC)the authors would like to acknowledge the Niobec mine (Saint-Honoré, QuébecQuébec)
文摘Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.
文摘AGB (aboveground fresh biomass) is one of the most important parameters of the crop condition monitored with remote sensing. Hyper spectrum remote sensing with the fine spectrum information becomes the efficient method estimating the vegetation AGB. The research was conducted in Xinjiang, the largest cotton planting region of China. The paper analyzed the correlation between the cotton AGB and reflective spectrum and the first derivative spectrum, and the variation coefficient of the waveband reflectance. According to the analysis above, all of 23 parameters, including the hyper spectrum reflectance, the first derivative spectrum parameters and normalization vegetation indexes, were established. And then the estimation models on cotton AGB of relaxing and compact canopy type were established and tested respectively. The tested results showed that Fgo1, [901,502], [901,629], [901,672] among the reflective spectral parameters and D525, D956, D1019, D1751 among the first derivative spectral parameters had the homogenous effect on different cotton canopy types, and the determination coefficients of the models above all arrive at the significant level of 0.99 confidence interval. At last, the tested results of the homogeneity models for different canopy types indicated the parameters of [901, 502], [901,629], [901,672] have more satisfying veracity than others, and the relative errors are as low as 17.0, 16.3 and 16.7% correspondingly; in contrast, the estimation veracity of the first derivative spectrum parameters of single waveband is low.