期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic Reconstruction of Total-cross-tied Photovoltaic Array Based on Arrays Using an Improved Dung Beetle Algorithm
1
作者 Peijin Liu Tao Huang +2 位作者 Yong Chen Lei Dong Fei Yu 《Chinese Journal of Electrical Engineering》 EI CSCD 2024年第3期77-93,共17页
A dynamic reconfiguration method for photovoltaic(PV)arrays based on an improved dung beetle algorithm(IDBO)to address the issue of PV array mismatch loss caused by partial shading conditions(PSCs)is proposed.To estab... A dynamic reconfiguration method for photovoltaic(PV)arrays based on an improved dung beetle algorithm(IDBO)to address the issue of PV array mismatch loss caused by partial shading conditions(PSCs)is proposed.To establish the output power-current(P-I)segmentation function for the total-cross-tied(TCT)PV array and the constraint function for the electrical switches,the IDBO algorithm was used to optimize both the P-I segmentation function and the electrical switch constraint function.IDBO is compared with algorithm-free reconfiguration and five other heuristic algorithms using two evaluation criteria:mismatch loss and power enhancement percentage,across six shading scenarios for 6x6 PV arrays.The irradiation distribution of PV arrays reconfigured by IDBO is also presented.The results show that IDBO effectively increases the output power of PV arrays and reduces mismatch loss.The output PV curves tend to exhibit a single peak,and the reconstruction results are superior to those obtained with the other methods. 展开更多
关键词 Photovoltaic power generation local shade dynamic reconstruction power mismatch improved dung beetle algorithm
原文传递
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments
2
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EDBOA) Path planning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部