The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the ...The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift.展开更多
基金supported by National Natural Science Foundation of China (Nos.40404011 and 40774051)National Probing Project (SinoProbe-02)the Basic outlay of scientific research work from the Ministry of Science and Technology of the People’s Republic of China in 2007, 2008, 2009
文摘The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift.