The Shanghai High Repetition Rate XFEL and Extreme Light Facility(SHINE)project will use 6001.3 GHz fundamental power couplers,which are modified based on TTF-Ⅲ power couplers,for continuous-wave operation with input...The Shanghai High Repetition Rate XFEL and Extreme Light Facility(SHINE)project will use 6001.3 GHz fundamental power couplers,which are modified based on TTF-Ⅲ power couplers,for continuous-wave operation with input power up to approximately 7 kW.The first batch of 20 sets of 1.3 GHz coupler prototypes was fabricated from three domestic manufacturers for the SHINE project.To better characterize the radio frequency conditioning phenomena for validating the performance of power couplers,a room temperature test stand was designed,constructed,and commissioned for the SHINE 1.3 GHz power couplers.In addition,a horizontal test cryostat was built to test the 1.3 GHz superconducting cavities,fundamental power couplers,tuners,and other components as a set.The results of these tests indicate that the 1.3 GHz couplers are capable of handling up to 14 kW continuous waves.Herein,the main aspects of the radio frequency design and construction of the test stand,along with the test results of the high-power conditioning of the 1.3 GHz couplers,are described.展开更多
A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as...A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient.展开更多
Peking University is developing a 1.3 GHz superconducting accelerating section highpower THz free- electron laser for the China Academy of Engineering Physics (CAEP). A compact fast/slow tuner has been developed by ...Peking University is developing a 1.3 GHz superconducting accelerating section highpower THz free- electron laser for the China Academy of Engineering Physics (CAEP). A compact fast/slow tuner has been developed by the Institute of High Energy Physics (IHEP) for the accelerating section to control Lorentz detuning, compensate for beam loading effect, microphonics and liquid helium pressure fluctuations. The tuner design, warm test and cold test of the first prototype are presented, which has a guiding significance for the manufazture of the formal tuner and cryomodule assembly.展开更多
The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC and future XFEL and ERL projects in China. With the aim to develop 1.3 GHz SRF technology, IHEP has started a pro...The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC and future XFEL and ERL projects in China. With the aim to develop 1.3 GHz SRF technology, IHEP has started a program to build an SRF Accelerating Unit. This unit contains a 9-cell 1.3 GHz superconducting cavity, a short cryomodule, a high power input coupler, a tuner and a low level RF system. This program also includes the SRF laboratory upgrade, which will permit the unit to be built and tested at IHEP. The unit will be used for the 1.3 GHz SRF system integration study, high power horizontal test and possible beam test in the future. In this paper, we report the recent R&D status of this program. The first large grain low-loss shape 9-cell superconducting RF cavity made by IHEP reached 20 MV/m in the first vertical test in July, 2010. The prototype tuner and low level RF (LLRF) system are under test. The high power input coupler and cryomodule are under fabrication. Several key SRF facilities for 9-cell cavity surface treatment and pre-tuning were successfully commissioned and are in operation.展开更多
Background A reliable and repeatable post-processing technology of improving the performance of 1.3 GHz superconducting radio frequency(SRF)cavities is one of the critical technologies for the ILC and XFEL and ERL pro...Background A reliable and repeatable post-processing technology of improving the performance of 1.3 GHz superconducting radio frequency(SRF)cavities is one of the critical technologies for the ILC and XFEL and ERL projects.Methods Three 1.3 GHz single-cell cavities were fabricated and received a baking in temperature 330℃,while the interior of the cavity stayed in ultra-high vacuum(UHV).The cavities were also vertical-tested after electropolishing(EP)with 120℃48-h baking and with nitrogen doping separately for a comparison.Results The Q_(0) of 1.3 GHz single cavity after medium-temperature baking can be 2-3×10^(10) in the accelerating gradient range of 2-35 MV/m in the 2 K vertical test in IHEP.Meanwhile,the outer surface oxidation of niobium cavity caused by baking will decrease the performance of the SRF cavity.Conclusions Medium-temperature(250-400℃)baking on the 1.3 GHz single-cell cavity will improve its Q_(0) in 2 K vertical test compared with EP followed by 120℃48-h baking baseline and reach a similar level of nitrogen doping,and the quench field will lower to a typical range of 20-30 MV/m.Meanwhile,the cavity performance is sensitive to the baking time and temperature,which indicates that a tremendous improvement can be made on the current treatment.展开更多
To test and verify the performance of the digital low-level radio-frequency (LLRF) and tuner system designed by the IHEP RF group, an experimental platform with a retired KEK 1.3 GHz nine-cell cavity is set up. A ra...To test and verify the performance of the digital low-level radio-frequency (LLRF) and tuner system designed by the IHEP RF group, an experimental platform with a retired KEK 1.3 GHz nine-cell cavity is set up. A radio-frequency (RF) field is established successfully in the cavity and the frequency of the cavity is locked by the tuner in ±0.5°(about ±1.2 kHz) at room temperature. The digital LLRF system performs well in a five-hour experiment, and the results show that the system achieves field stability at amplitude 〈0.1% (peak to peak) and phase 〈0.1° (peak to peak). This index satisfies the requirements of the International Linear Collider (ILC), and this paper describes this closed-loop experiment of the LLRF system.展开更多
Research and development of a 1.3 GHz 9-cell cavity test cryomodule were carried out by a collaboration group between IHEP (Institute of High Energy Physics) and TIPC (Technical Institute of Physics and Chemistry)...Research and development of a 1.3 GHz 9-cell cavity test cryomodule were carried out by a collaboration group between IHEP (Institute of High Energy Physics) and TIPC (Technical Institute of Physics and Chemistry) in China. The cryomodule is a "test model" for the ILC cryomodule, and a key component of a superconducting accelerator test unit which will be built in the near future, also can be used as a horizontal test facility for 1.3 GHz 9-cell cavities. This paper presents the development status of the cryomodule, including structure design, cryogenic flow diagram, thermal and mechanical simulations, heat load estimation and etc.展开更多
In accelerator RF cavities, there exists not only the fundamental mode which is used to accelerate the beam, but also higher order modes(HOMs). The higher order modes excited by the beam can seriously affect beam qu...In accelerator RF cavities, there exists not only the fundamental mode which is used to accelerate the beam, but also higher order modes(HOMs). The higher order modes excited by the beam can seriously affect beam quality, especially for the higher R/Q modes. 1.3 GHz low-loss 9-cell superconducting cavity as a candidate for ILC high gradient cavity, the properties of higher order mode has not been studied carefully. IHEP based on existing low loss cavity, designed and developed a large grain size 1.3 GHz low-loss 9-cell superconducting cavity(IHEP02cavity). The higher order mode coupler of IHEP02 used TESLA coupler's design. As a result of the limitation of the mechanical design, the distance between higher order mode coupler and end cell is larger than TESLA cavity.This paper reports on measured results of higher order modes in the IHEP02 1.3 GHz low-loss 9-cell superconducting cavity. Using different methods, Q e of the dangerous modes passbands have been obtained. The results are compared with TESLA cavity results. R/Q of the first three passbands have also been obtained by simulation and compared with the results of the TESLA cavity.展开更多
基金supported by Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)。
文摘The Shanghai High Repetition Rate XFEL and Extreme Light Facility(SHINE)project will use 6001.3 GHz fundamental power couplers,which are modified based on TTF-Ⅲ power couplers,for continuous-wave operation with input power up to approximately 7 kW.The first batch of 20 sets of 1.3 GHz coupler prototypes was fabricated from three domestic manufacturers for the SHINE project.To better characterize the radio frequency conditioning phenomena for validating the performance of power couplers,a room temperature test stand was designed,constructed,and commissioned for the SHINE 1.3 GHz power couplers.In addition,a horizontal test cryostat was built to test the 1.3 GHz superconducting cavities,fundamental power couplers,tuners,and other components as a set.The results of these tests indicate that the 1.3 GHz couplers are capable of handling up to 14 kW continuous waves.Herein,the main aspects of the radio frequency design and construction of the test stand,along with the test results of the high-power conditioning of the 1.3 GHz couplers,are described.
基金Supported by the National Key Program for S&T Research and Development under Grant No 2016YFA0400400the National Natural Science Foundation of China under Grant No 11575012
文摘A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient.
基金Supported by the 500 MHz superconducting cavity electromechanical tuning system(Y190KFEOHD)NSAF(11176003)National Major Scientific Instrument and Equipment Development projects(2011YQ130018)
文摘Peking University is developing a 1.3 GHz superconducting accelerating section highpower THz free- electron laser for the China Academy of Engineering Physics (CAEP). A compact fast/slow tuner has been developed by the Institute of High Energy Physics (IHEP) for the accelerating section to control Lorentz detuning, compensate for beam loading effect, microphonics and liquid helium pressure fluctuations. The tuner design, warm test and cold test of the first prototype are presented, which has a guiding significance for the manufazture of the formal tuner and cryomodule assembly.
文摘The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC and future XFEL and ERL projects in China. With the aim to develop 1.3 GHz SRF technology, IHEP has started a program to build an SRF Accelerating Unit. This unit contains a 9-cell 1.3 GHz superconducting cavity, a short cryomodule, a high power input coupler, a tuner and a low level RF system. This program also includes the SRF laboratory upgrade, which will permit the unit to be built and tested at IHEP. The unit will be used for the 1.3 GHz SRF system integration study, high power horizontal test and possible beam test in the future. In this paper, we report the recent R&D status of this program. The first large grain low-loss shape 9-cell superconducting RF cavity made by IHEP reached 20 MV/m in the first vertical test in July, 2010. The prototype tuner and low level RF (LLRF) system are under test. The high power input coupler and cryomodule are under fabrication. Several key SRF facilities for 9-cell cavity surface treatment and pre-tuning were successfully commissioned and are in operation.
基金supported by the Platform of Advanced Photon Source Technology R&D
文摘Background A reliable and repeatable post-processing technology of improving the performance of 1.3 GHz superconducting radio frequency(SRF)cavities is one of the critical technologies for the ILC and XFEL and ERL projects.Methods Three 1.3 GHz single-cell cavities were fabricated and received a baking in temperature 330℃,while the interior of the cavity stayed in ultra-high vacuum(UHV).The cavities were also vertical-tested after electropolishing(EP)with 120℃48-h baking and with nitrogen doping separately for a comparison.Results The Q_(0) of 1.3 GHz single cavity after medium-temperature baking can be 2-3×10^(10) in the accelerating gradient range of 2-35 MV/m in the 2 K vertical test in IHEP.Meanwhile,the outer surface oxidation of niobium cavity caused by baking will decrease the performance of the SRF cavity.Conclusions Medium-temperature(250-400℃)baking on the 1.3 GHz single-cell cavity will improve its Q_(0) in 2 K vertical test compared with EP followed by 120℃48-h baking baseline and reach a similar level of nitrogen doping,and the quench field will lower to a typical range of 20-30 MV/m.Meanwhile,the cavity performance is sensitive to the baking time and temperature,which indicates that a tremendous improvement can be made on the current treatment.
文摘To test and verify the performance of the digital low-level radio-frequency (LLRF) and tuner system designed by the IHEP RF group, an experimental platform with a retired KEK 1.3 GHz nine-cell cavity is set up. A radio-frequency (RF) field is established successfully in the cavity and the frequency of the cavity is locked by the tuner in ±0.5°(about ±1.2 kHz) at room temperature. The digital LLRF system performs well in a five-hour experiment, and the results show that the system achieves field stability at amplitude 〈0.1% (peak to peak) and phase 〈0.1° (peak to peak). This index satisfies the requirements of the International Linear Collider (ILC), and this paper describes this closed-loop experiment of the LLRF system.
基金Supported by National Natural Science Foundation of China (10525525)China Postdoctoral Science Foundation(20070410637)
文摘Research and development of a 1.3 GHz 9-cell cavity test cryomodule were carried out by a collaboration group between IHEP (Institute of High Energy Physics) and TIPC (Technical Institute of Physics and Chemistry) in China. The cryomodule is a "test model" for the ILC cryomodule, and a key component of a superconducting accelerator test unit which will be built in the near future, also can be used as a horizontal test facility for 1.3 GHz 9-cell cavities. This paper presents the development status of the cryomodule, including structure design, cryogenic flow diagram, thermal and mechanical simulations, heat load estimation and etc.
基金Supported by Knowledge Innovation Project of The Chinese Academy of Sciences
文摘In accelerator RF cavities, there exists not only the fundamental mode which is used to accelerate the beam, but also higher order modes(HOMs). The higher order modes excited by the beam can seriously affect beam quality, especially for the higher R/Q modes. 1.3 GHz low-loss 9-cell superconducting cavity as a candidate for ILC high gradient cavity, the properties of higher order mode has not been studied carefully. IHEP based on existing low loss cavity, designed and developed a large grain size 1.3 GHz low-loss 9-cell superconducting cavity(IHEP02cavity). The higher order mode coupler of IHEP02 used TESLA coupler's design. As a result of the limitation of the mechanical design, the distance between higher order mode coupler and end cell is larger than TESLA cavity.This paper reports on measured results of higher order modes in the IHEP02 1.3 GHz low-loss 9-cell superconducting cavity. Using different methods, Q e of the dangerous modes passbands have been obtained. The results are compared with TESLA cavity results. R/Q of the first three passbands have also been obtained by simulation and compared with the results of the TESLA cavity.