In this work, an ultrasound-assisted leaching process was studied for the recovery of zinc from electric arc furnace (EAF) dust, in which zinc was mainly present in the form of franklinite (60%). HydrometaUurgy is...In this work, an ultrasound-assisted leaching process was studied for the recovery of zinc from electric arc furnace (EAF) dust, in which zinc was mainly present in the form of franklinite (60%). HydrometaUurgy is emerging as a preferred process for the recovery of a va- riety of metals, and the use of ultrasound could offer advantages over the conventional leaching process, especially for the dissolution of franklinite. Franklinite is a refractory phase that is difficult to leach and represents the main obstacle in conventional hydrometallurgy proc- essing. Atmospheric leaching with different sulfuric acid concentrations (0.2-2.0 M) at two temperatures (323 and 353 K) was performed. The tests were conducted using both conventional and ultrasound-assisted leaching. After the leaching tests, the solid residues were charac- terized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques, whereas the leach liquor was analyzed by induc- tively coupled plasma spectroscopy OCP). The use of ultrasound facilitated the dissolution of franklinite at low acid concentrations and re- suited in a greater zinc recovery under all of the investigated operating conditions.展开更多
This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antim...This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antimony-containing phase was reduced into Sb4O6,volatilized into smoke,and finally recovered through the cooling cylinder.The antimony recovery rate increased from 66.00 wt%to 73.81 wt%in temperature range of 650 to 800°C,and decreased with temperature increased further to 900°C due to the reduction of Sb4O6 to the nonvolatile Sb.Similarly,the CO partial pressure also played a double role in this test.Under optimized conditions of roasting temperature of 800°C,CO partial pressure of 7.5 vol%and roasting time of 120 min,98.40 wt%of arsenic removal rate and 80.40 wt%antimony recovery rate could be obtained.In addition,the“As2O3”product could be used for preparing ferric arsenate which realized the harmless treatment of it.展开更多
Several physical and chemical detection methods were used to study the basic properties of sintering dust (ESP dust) collected from Baogang Steel Corporation. The result shows that the major constituents of the ESP ...Several physical and chemical detection methods were used to study the basic properties of sintering dust (ESP dust) collected from Baogang Steel Corporation. The result shows that the major constituents of the ESP dust are KCl, NaCl, Fe2O_3 and Fe3O_4. Water leaching experiment on the sintering dust shows that KCl in the ESP dust can be separated and recovered by water leaching and fractional crystallization. Component analysis of leaching solution indicates that the massive calcium sulfate in the leaching solution should be removed first in order to obtain the pure potassium salt. In order to provide theoretical guidance to inhibit the dissolution of calcium ions from the sintering dust, the water leaching experiment of ESP dust and the dissolution behavior of CaSO_4 in the potassium chloride, sodium chloride, potassium sulfate and their mixed salt solution were studied. It is found that, a lower liquid-solid ratio should be chosen in the leaching process to inhibit the dissolution of calcium sulfate dehydrate. Using sodium carbonate solution as a precipitating agent, the influences of the concentration of sodium carbonate solution, reaction temperature, stirring speed and equilibrium time on the preparation of the spherical calcium carbonate were studied. Spherical calcium carbonate with good dispersing performance and grain size distribution in nanometer range of less than 10 μm was obtained. Furthermore, a potassium recovery process with joint production of spherical calcium carbonate was designed. This process is technically viable and considerable in economic benefit.展开更多
The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered ...The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.展开更多
With the production of crude steel, China produces several million tons of sintering dusts which contain a great deal of valuable metals such as, K, Na, Zn, Pb. If discharged directly without adequate treatment, these...With the production of crude steel, China produces several million tons of sintering dusts which contain a great deal of valuable metals such as, K, Na, Zn, Pb. If discharged directly without adequate treatment, these elements can lead to adverse effects on the environment. Therefore, it is very necessary to determine how to separate these elements from the dust before discharge, Several physical and chemical detection methods were used to study the basic properties of sintering dust. At the same time, preliminary experiments on the recovery of the potassium resources from the sintering dust were carried out. The mean particle size of the electrostatic precipitator (ESP) dust determined by a laser granulometer was 41.468 ~tm. Multi-point BET and single-point BET analysis showed that the surface area of the ESP dust was 2.697 mZ/g. XRD measurements detected the following phases in the ESP dust: Fe203, Fe304, KC1 and NaC1, and Fe203, Fe304 and SiO2 in the water-washed dust. SEM-EDS results proved that in the ESP dust, K mostly existed in the form of KC1 particles without being coated. Leaching experiments showed that the KCI in the ESP dust could be separated and recovered by water leaching and fractional crystallization. Through the recovery experiments, the yield of K-Na vaporized crystalline salt was 18.56%, in which the mass fractions of KCl, NaCl, CaSO4 and K2SO4 were about 61.03%, 13.58%, 14.03% and 9.97%, respectively. This process is technically viable and considerable in economic benefit. There was almost no secondary pollution produced in the whole recovery process.展开更多
Recycling of iron and steelmaking dusts is a key issue in environmental protection efforts and to ensure efficient utilization. In this investigation, we developed a novel recovery process that uses a dispersed in-sit...Recycling of iron and steelmaking dusts is a key issue in environmental protection efforts and to ensure efficient utilization. In this investigation, we developed a novel recovery process that uses a dispersed in-situ phase induced by an explosive reaction of composite balls of iron and steelmaking dusts. We designed and prepared composite balls for this function using a laboratory model batch-type balling disc(at 12 r/min) and optimized the feeding modes in 180-t and 260-t basic oxygen furnace(BOF) converters. The results indicate that feeding composite balls into BOF converters is an effective novel technology for recovering iron and steelmaking dusts. The period after hot metal charging and prior to the oxygen-blowing process is the most reasonable time to feed composite balls. Composite ball treatment is not appropriate for steel production with sulfur requirements lower than 80 ppm. The maximum composite ball feeding amount is 40 kg/t and the iron yield rate is better than 95%. Compared with the conventional recycling process of sludge and dust, this novel technology is more convenient and efficient, saving up to 309 RMB per ton of steel. Further investigation of this novel recycling technology is merited.展开更多
Millions of tons of tailing dump at Rayfield mine in Jos in North Central Plateau state of Nigeria have been found to contain large quantity of columbite. Initial attempts to recover columbite concentrates by local mi...Millions of tons of tailing dump at Rayfield mine in Jos in North Central Plateau state of Nigeria have been found to contain large quantity of columbite. Initial attempts to recover columbite concentrates by local miners and mineral speculators from the columbite rich tailing dump failed due to the ineffective processing route employed. Using cone and quartering sampling method, 0.5 kg of the columbite tailing was obtained for sieve and chemical analyses. 50 kg of <1mm fraction of the sample was subjected to a first stage magnetic concentration in a three poles Dry High Intensity Magnetic Separator (DHMS) that separated the columbite in the third pole. The re-grind of the + 0.355 mm rougher concentrate fraction (containing interlocking columbite) to pass the sieve aperture was treated on the DHMS in the second stage. The rougher concentrate undersize and columbite pre-concentrate of the first stage magnetic separation were then gravity concentrated on the air float machine. The Rayfield tailings and final concentrate were assayed using ED-XRFS to obtain 12.5% and 69.6% Nb2O5, respectively. The recovery and separation efficiency were 77.95% and 77.88% in that order. The magnetic and gravity concentrations were found effective at 77.95% recovery for columbite from the Rayfield tailing dump. This study also provided database for optimum recovery of columbite from tailings of mining sites of similar composition.展开更多
The leaching of chromium from stainless steel dust (SSD) is deleterious to the environment. To address this issue, the reduction of SSD briquettes can be employed to effectively extract chromium. The recovery rates ...The leaching of chromium from stainless steel dust (SSD) is deleterious to the environment. To address this issue, the reduction of SSD briquettes can be employed to effectively extract chromium. The recovery rates of iron, chromium, and nickel via ironbath reduction of SSD briquettes were determined using X-ray fluorescence spectroscopy, X-ray diffraction, and scanning electron microscopy measurements. First, the effects of basicity and contents of silicon, iron, CaF2, and carbon on the recovery rates of the three metals were analyzed using the slag amount prediction model, which was originally established from the A1203 balance of corundum crucible erosion behavior. Second, the effect of feeding mode, i.e., whether steel scrap and SSD briquettes were simultaneously added, on the recovery rates was discussed in detail. Third, the iron-bath reduction of SSD briquettes was thermodynamically analyzed. The results indicated that the recovery rates of the three metals are greater than 95% those of using a basicity of 1.5 and 6.0% CaF2, 15% carbon, and 7% ferrosilicon. The recovery rate of chromium increases twofold with the addition of ferrosilicon. The feeding mode of adding briquettes and steel scrap simultaneously is better for recovery of metals and separation of the metal and slag than the feeding mode of adding steel scrap firstly and then briquettes.展开更多
基金supported by a Senior Research Grant 2011, University of Padua (Protocol GRIC13VPE5)
文摘In this work, an ultrasound-assisted leaching process was studied for the recovery of zinc from electric arc furnace (EAF) dust, in which zinc was mainly present in the form of franklinite (60%). HydrometaUurgy is emerging as a preferred process for the recovery of a va- riety of metals, and the use of ultrasound could offer advantages over the conventional leaching process, especially for the dissolution of franklinite. Franklinite is a refractory phase that is difficult to leach and represents the main obstacle in conventional hydrometallurgy proc- essing. Atmospheric leaching with different sulfuric acid concentrations (0.2-2.0 M) at two temperatures (323 and 353 K) was performed. The tests were conducted using both conventional and ultrasound-assisted leaching. After the leaching tests, the solid residues were charac- terized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques, whereas the leach liquor was analyzed by induc- tively coupled plasma spectroscopy OCP). The use of ultrasound facilitated the dissolution of franklinite at low acid concentrations and re- suited in a greater zinc recovery under all of the investigated operating conditions.
基金Project(51564034)supported by the National Science Fund for Distinguished Regional Scholars,China
文摘This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antimony-containing phase was reduced into Sb4O6,volatilized into smoke,and finally recovered through the cooling cylinder.The antimony recovery rate increased from 66.00 wt%to 73.81 wt%in temperature range of 650 to 800°C,and decreased with temperature increased further to 900°C due to the reduction of Sb4O6 to the nonvolatile Sb.Similarly,the CO partial pressure also played a double role in this test.Under optimized conditions of roasting temperature of 800°C,CO partial pressure of 7.5 vol%and roasting time of 120 min,98.40 wt%of arsenic removal rate and 80.40 wt%antimony recovery rate could be obtained.In addition,the“As2O3”product could be used for preparing ferric arsenate which realized the harmless treatment of it.
基金Projects(2012AA062502,2012AA06A118)supported by the National High-tech Research and Development Program of China
文摘Several physical and chemical detection methods were used to study the basic properties of sintering dust (ESP dust) collected from Baogang Steel Corporation. The result shows that the major constituents of the ESP dust are KCl, NaCl, Fe2O_3 and Fe3O_4. Water leaching experiment on the sintering dust shows that KCl in the ESP dust can be separated and recovered by water leaching and fractional crystallization. Component analysis of leaching solution indicates that the massive calcium sulfate in the leaching solution should be removed first in order to obtain the pure potassium salt. In order to provide theoretical guidance to inhibit the dissolution of calcium ions from the sintering dust, the water leaching experiment of ESP dust and the dissolution behavior of CaSO_4 in the potassium chloride, sodium chloride, potassium sulfate and their mixed salt solution were studied. It is found that, a lower liquid-solid ratio should be chosen in the leaching process to inhibit the dissolution of calcium sulfate dehydrate. Using sodium carbonate solution as a precipitating agent, the influences of the concentration of sodium carbonate solution, reaction temperature, stirring speed and equilibrium time on the preparation of the spherical calcium carbonate were studied. Spherical calcium carbonate with good dispersing performance and grain size distribution in nanometer range of less than 10 μm was obtained. Furthermore, a potassium recovery process with joint production of spherical calcium carbonate was designed. This process is technically viable and considerable in economic benefit.
基金financially supported by the National Natural Science Foundation of China (No. 51474021)the Fundamental Research Funds for the Central Universities of China (No. FRF-SD-12-009A)
文摘The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.
基金supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA062502)the National Natural Science Foundation of China (No. 50974018)
文摘With the production of crude steel, China produces several million tons of sintering dusts which contain a great deal of valuable metals such as, K, Na, Zn, Pb. If discharged directly without adequate treatment, these elements can lead to adverse effects on the environment. Therefore, it is very necessary to determine how to separate these elements from the dust before discharge, Several physical and chemical detection methods were used to study the basic properties of sintering dust. At the same time, preliminary experiments on the recovery of the potassium resources from the sintering dust were carried out. The mean particle size of the electrostatic precipitator (ESP) dust determined by a laser granulometer was 41.468 ~tm. Multi-point BET and single-point BET analysis showed that the surface area of the ESP dust was 2.697 mZ/g. XRD measurements detected the following phases in the ESP dust: Fe203, Fe304, KC1 and NaC1, and Fe203, Fe304 and SiO2 in the water-washed dust. SEM-EDS results proved that in the ESP dust, K mostly existed in the form of KC1 particles without being coated. Leaching experiments showed that the KCI in the ESP dust could be separated and recovered by water leaching and fractional crystallization. Through the recovery experiments, the yield of K-Na vaporized crystalline salt was 18.56%, in which the mass fractions of KCl, NaCl, CaSO4 and K2SO4 were about 61.03%, 13.58%, 14.03% and 9.97%, respectively. This process is technically viable and considerable in economic benefit. There was almost no secondary pollution produced in the whole recovery process.
文摘Recycling of iron and steelmaking dusts is a key issue in environmental protection efforts and to ensure efficient utilization. In this investigation, we developed a novel recovery process that uses a dispersed in-situ phase induced by an explosive reaction of composite balls of iron and steelmaking dusts. We designed and prepared composite balls for this function using a laboratory model batch-type balling disc(at 12 r/min) and optimized the feeding modes in 180-t and 260-t basic oxygen furnace(BOF) converters. The results indicate that feeding composite balls into BOF converters is an effective novel technology for recovering iron and steelmaking dusts. The period after hot metal charging and prior to the oxygen-blowing process is the most reasonable time to feed composite balls. Composite ball treatment is not appropriate for steel production with sulfur requirements lower than 80 ppm. The maximum composite ball feeding amount is 40 kg/t and the iron yield rate is better than 95%. Compared with the conventional recycling process of sludge and dust, this novel technology is more convenient and efficient, saving up to 309 RMB per ton of steel. Further investigation of this novel recycling technology is merited.
文摘Millions of tons of tailing dump at Rayfield mine in Jos in North Central Plateau state of Nigeria have been found to contain large quantity of columbite. Initial attempts to recover columbite concentrates by local miners and mineral speculators from the columbite rich tailing dump failed due to the ineffective processing route employed. Using cone and quartering sampling method, 0.5 kg of the columbite tailing was obtained for sieve and chemical analyses. 50 kg of <1mm fraction of the sample was subjected to a first stage magnetic concentration in a three poles Dry High Intensity Magnetic Separator (DHMS) that separated the columbite in the third pole. The re-grind of the + 0.355 mm rougher concentrate fraction (containing interlocking columbite) to pass the sieve aperture was treated on the DHMS in the second stage. The rougher concentrate undersize and columbite pre-concentrate of the first stage magnetic separation were then gravity concentrated on the air float machine. The Rayfield tailings and final concentrate were assayed using ED-XRFS to obtain 12.5% and 69.6% Nb2O5, respectively. The recovery and separation efficiency were 77.95% and 77.88% in that order. The magnetic and gravity concentrations were found effective at 77.95% recovery for columbite from the Rayfield tailing dump. This study also provided database for optimum recovery of columbite from tailings of mining sites of similar composition.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 51304053), Jiangxi University of Science and Technology Doctoral Start-up Fund (No. 3401223181).
文摘The leaching of chromium from stainless steel dust (SSD) is deleterious to the environment. To address this issue, the reduction of SSD briquettes can be employed to effectively extract chromium. The recovery rates of iron, chromium, and nickel via ironbath reduction of SSD briquettes were determined using X-ray fluorescence spectroscopy, X-ray diffraction, and scanning electron microscopy measurements. First, the effects of basicity and contents of silicon, iron, CaF2, and carbon on the recovery rates of the three metals were analyzed using the slag amount prediction model, which was originally established from the A1203 balance of corundum crucible erosion behavior. Second, the effect of feeding mode, i.e., whether steel scrap and SSD briquettes were simultaneously added, on the recovery rates was discussed in detail. Third, the iron-bath reduction of SSD briquettes was thermodynamically analyzed. The results indicated that the recovery rates of the three metals are greater than 95% those of using a basicity of 1.5 and 6.0% CaF2, 15% carbon, and 7% ferrosilicon. The recovery rate of chromium increases twofold with the addition of ferrosilicon. The feeding mode of adding briquettes and steel scrap simultaneously is better for recovery of metals and separation of the metal and slag than the feeding mode of adding steel scrap firstly and then briquettes.