期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering Scheme for Cognitive Radio Wireless Sensor Networks
1
作者 Sami Saeed Binyamin Mahmoud Ragab 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期105-119,共15页
Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a prom... Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches. 展开更多
关键词 Cognitive radio wireless sensor networks CLUSTERING dwarf mongoose optimization algorithm fitness function
下载PDF
Improved Dwarf Mongoose Optimization Algorithm for Feature Selection:Application in Software Fault Prediction Datasets
2
作者 Abdelaziz I.Hammouri Mohammed A.Awadallah +2 位作者 Malik Sh.Braik Mohammed Azmi Al-Betar Majdi Beseiso 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2000-2033,共34页
Feature selection(FS)plays a crucial role in pre-processing machine learning datasets,as it eliminates redundant features to improve classification accuracy and reduce computational costs.This paper presents an enhanc... Feature selection(FS)plays a crucial role in pre-processing machine learning datasets,as it eliminates redundant features to improve classification accuracy and reduce computational costs.This paper presents an enhanced approach to FS for software fault prediction,specifically by enhancing the binary dwarf mongoose optimization(BDMO)algorithm with a crossover mechanism and a modified positioning updating formula.The proposed approach,termed iBDMOcr,aims to fortify exploration capability,promote population diversity,and lastly improve the wrapper-based FS process for software fault prediction tasks.iBDMOcr gained superb performance compared to other well-esteemed optimization methods across 17 benchmark datasets.It ranked first in 11 out of 17 datasets in terms of average classification accuracy.Moreover,iBDMOcr outperformed other methods in terms of average fitness values and number of selected features across all datasets.The findings demonstrate the effectiveness of iBDMOcr in addressing FS problems in software fault prediction,leading to more accurate and efficient models. 展开更多
关键词 dwarf mongoose optimization algorithm optimization Feature selection CLASSIFICATION
原文传递
领导者引导与支配解进化的多目标矮猫鼬算法 被引量:1
3
作者 赵世杰 张红易 马世林 《计算机科学与探索》 CSCD 北大核心 2024年第2期403-424,共22页
面对现实中日益复杂的多目标优化问题,需要发展新型多目标优化算法应对挑战。提出一种基于领导者引导与支配解动态缩减进化的多目标矮猫鼬优化算法(MODMO)。领导者引导机制通过引入动态权衡因子以调控侦察猫鼬探寻土丘的搜索半径,同时... 面对现实中日益复杂的多目标优化问题,需要发展新型多目标优化算法应对挑战。提出一种基于领导者引导与支配解动态缩减进化的多目标矮猫鼬优化算法(MODMO)。领导者引导机制通过引入动态权衡因子以调控侦察猫鼬探寻土丘的搜索半径,同时以非劣解集构建外部存档并根据非支配排序层级确定出领导者,进而引导侦察猫鼬向多目标前沿面推进以改善算法的收敛性;支配解动态缩减进化策略是为克服非劣解外部存档维护过程中的解冗余问题而构建,其以支配关系和拥挤距离动态筛选支配解并存入外部存档,以支配解信息融入种群进化实现多目标潜在前沿的挖掘并增强算法的多样性。在ZDT、DTLZ与WFG基准函数上,与5种代表性比较算法的实验结果表明MODMO算法在收敛性与多样性上均具有显著优势。 展开更多
关键词 多目标优化 矮猫鼬优化算法 领导者引导机制 外部存档 支配解动态缩减进化策略
下载PDF
光伏波动平抑下改进K-means的电池储能动态分组控制策略 被引量:1
4
作者 余洋 陆文韬 +3 位作者 陈东阳 刘霡 夏雨星 郑晓明 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期1-11,共11页
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并... 针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。 展开更多
关键词 电池储能系统 波动平抑 功率分配 改进侏儒猫鼬优化算法 改进K-means聚类算法
下载PDF
Salp Swarm Incorporated Adaptive Dwarf Mongoose Optimizer with Lévy Flight and Gbest-Guided Strategy
5
作者 Gang Hu Yuxuan Guo Guanglei Sheng 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2110-2144,共35页
In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLS... In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems. 展开更多
关键词 dwarf mongoose optimization algorithm Gbest-guided Lévy flight Adaptive parameter Salp swarm algorithm Engineering optimization Truss topological optimization
原文传递
Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems 被引量:1
6
作者 Jeffrey O.Agushaka Absalom E.Ezugwu +3 位作者 Oyelade N.Olaide Olatunji Akinola Raed Abu Zitar Laith Abualigah 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1263-1295,共33页
This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but... This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms. 展开更多
关键词 Improved dwarf mongoose Nature-inspired algorithms Constrained optimization Unconstrained optimization Engineering design problems
原文传递
基于三相逆变器变开关频率和变直流母线电压的PMSM控制
7
作者 杨红 杨帆 杨汝 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第1期225-233,284,共10页
针对三相电压源逆变器应用固定开关频率和额定直流母线电压的空间矢量脉宽调制(space vector pulse width modulation,SVPWM)驱动方式时存在直流电压利用率低、绝缘栅双极性晶体管(insulated gate bipolar tran⁃sistors,IGBT)损耗较高... 针对三相电压源逆变器应用固定开关频率和额定直流母线电压的空间矢量脉宽调制(space vector pulse width modulation,SVPWM)驱动方式时存在直流电压利用率低、绝缘栅双极性晶体管(insulated gate bipolar tran⁃sistors,IGBT)损耗较高的缺点,建立永磁同步电机(permanent magnet synchronous motor,PMSM)和基于输出周期的IGBT损耗控制模型,在此基础上以输出电流质量为约束条件,以开关频率和直流母线电压为约束变量,应用猫鼬优化算法获得基于输出周期的IGBT损耗最优的开关频率和直流母线电压。对所提出的策略进行仿真和实验,通过比较输出电流总谐波畸变率(total harmonic distortion,THD)、电流波形、IGBT损耗和结温等验证所提策略在保证控制系统性能的条件下降低三相电压源逆变器损耗,增加三相电压源逆变器的可靠性。 展开更多
关键词 IGBT损耗 三相电压源逆变器 开关频率 直流母线电压 猫鼬优化算法
下载PDF
透镜成像反向学习的精英池侏儒猫鼬优化算法 被引量:4
8
作者 贾鹤鸣 陈丽珍 +3 位作者 力尚龙 刘庆鑫 吴迪 卢程浩 《计算机工程与应用》 CSCD 北大核心 2023年第24期131-139,共9页
侏儒猫鼬优化算法(dwarf mongoose optimization,DMO)是新提出的一种元启发式算法,该算法具有较强的全局探索能力和稳定性,但由于原始算法中仅依靠雌性首领带领整个猫鼬种群进行搜索,会产生收敛速度较慢、易陷入局部最优以及探索阶段与... 侏儒猫鼬优化算法(dwarf mongoose optimization,DMO)是新提出的一种元启发式算法,该算法具有较强的全局探索能力和稳定性,但由于原始算法中仅依靠雌性首领带领整个猫鼬种群进行搜索,会产生收敛速度较慢、易陷入局部最优以及探索阶段与开发阶段之间的平衡较差等问题。针对上述问题,提出一种融合透镜成像反向学习的精英池侏儒猫鼬优化算法(improved dwarf mongoose optimization,IDMO),采用透镜成像反向学习策略,避免算法在迭代过程中陷入局部最优,增强算法的探索能力;在阿尔法组觅食时引入精英池策略,提高了算法的收敛精度,进一步增强算法探索能力。通过基准测试函数进行实验,表明IDMO算法具有良好的寻优性能和鲁棒性,且算法收敛速度得到显著提升。通过对汽车碰撞优化问题的求解,进一步验证了IDMO算法具有良好的适用性和有效性。 展开更多
关键词 侏儒猫鼬优化算法 元启发式算法 透镜成像反向学习策略 精英池策略
下载PDF
基于觅食能力分配搜索任务的侏儒猫鼬优化算法
9
作者 张宁 王勇 张伟 《广西民族大学学报(自然科学版)》 CAS 2023年第3期74-85,共12页
针对侏儒猫鼬优化算法存在的不足,提出一种基于觅食能力分配搜索任务的侏儒猫鼬优化算法。首先采用tent混沌自适应步长平衡全局搜索与局部开发;针对alpha组搜索盲目性问题,优化其移动方向及移动能力;针对侦察组算法移动方向存在误导性问... 针对侏儒猫鼬优化算法存在的不足,提出一种基于觅食能力分配搜索任务的侏儒猫鼬优化算法。首先采用tent混沌自适应步长平衡全局搜索与局部开发;针对alpha组搜索盲目性问题,优化其移动方向及移动能力;针对侦察组算法移动方向存在误导性问题,增强其个体纠错能力,从而提升个体觅食能力;改进保姆组移动算法,提升种群的局部开发能力;最后提出一种新的种群觅食策略,平衡各算法之间调用策略,提升算法整体性能。通过解决12个基准测试函数与支持向量机的参数优化问题,对该文算法性能进行数值实验验证。实验结果表明FADMO的全局收敛精度与全局收敛速度均有明显提高,并适用于实际问题求解。 展开更多
关键词 智能优化 侏儒猫鼬优化算法(dmo) 觅食能力分配任务 支持向量机参数优化
下载PDF
改进矮猫鼬优化算法的特征选择
10
作者 罗淑媛 张家豪 +1 位作者 宋美佳 贾鹤鸣 《龙岩学院学报》 2023年第2期40-46,共7页
将矮猫鼬优化(DMO)算法与学习策略相结合,提出一种新的改进矮猫鼬优化(IDMO)算法。首先,提出随机准反向反射学习(RQORBL)策略并应用于阿尔法组,以提高全局探索能力;其次,引入动态透镜成像反向学习(LOBL)策略,以平衡算法的探索和开发,提... 将矮猫鼬优化(DMO)算法与学习策略相结合,提出一种新的改进矮猫鼬优化(IDMO)算法。首先,提出随机准反向反射学习(RQORBL)策略并应用于阿尔法组,以提高全局探索能力;其次,引入动态透镜成像反向学习(LOBL)策略,以平衡算法的探索和开发,提升跳出局部最优的能力。为验证新算法性能,将IDMO与几种新近提出的优化算法进行对比,并对UCI存储库中的10个数据集进行特征选择仿真实验。实验结果表明IDMO寻优能力更佳,跳出局部最优能力明显增强,能够有效适用于特征选择问题。 展开更多
关键词 矮猫鼬优化算法 特征选择 随机准反向反射学习 动态透镜成像反向学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部