Objective:Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers,because it sustains cancer cell survival,proliferation,and metastasis.The a...Objective:Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers,because it sustains cancer cell survival,proliferation,and metastasis.The acyl-Co A synthetase long-chain(ACSL)family is known to activate long-chain fatty acids,yet the specific role of ACSL3 in breast cancer has not been determined.Methods:We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples.Gain-of-function and lossof-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo.Results:ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues,and this phenotype correlated with improved survival outcomes.Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation,migration,and epithelial±mesenchymal transition.Mechanistically,ACSL3 was found to inhibitβ-oxidation and the formation of associated byproducts,thereby suppressing malignant behavior in breast cancer.Importantly,ACSL3 was found to interact with YES proto-oncogene 1,a member of the Src family of tyrosine kinases,and to suppress its activation through phosphorylation at Tyr419.The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation,and the expression of its downstream genes in breast cancer cell nuclei.Conclusions:ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming,and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways.These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.82203786)the Natural Science Foundation of Liaoning Province of China(Grant No.2022-YGJC-68 and Grant No.2023-BS-105)the Chinese Young Breast Experts Research Project(Grant No.CYBER-2021-A02 and Grant No.CYBER-2022-001)。
文摘Objective:Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers,because it sustains cancer cell survival,proliferation,and metastasis.The acyl-Co A synthetase long-chain(ACSL)family is known to activate long-chain fatty acids,yet the specific role of ACSL3 in breast cancer has not been determined.Methods:We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples.Gain-of-function and lossof-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo.Results:ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues,and this phenotype correlated with improved survival outcomes.Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation,migration,and epithelial±mesenchymal transition.Mechanistically,ACSL3 was found to inhibitβ-oxidation and the formation of associated byproducts,thereby suppressing malignant behavior in breast cancer.Importantly,ACSL3 was found to interact with YES proto-oncogene 1,a member of the Src family of tyrosine kinases,and to suppress its activation through phosphorylation at Tyr419.The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation,and the expression of its downstream genes in breast cancer cell nuclei.Conclusions:ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming,and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways.These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.