Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Comp...Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors.展开更多
Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory,...Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory, the oscillator strengths for some absorption transitions were calculated according to the absorption spectra. The intensity parameters Ω1 (t = 2, 4, 6) of Dy^3+ were determined by using a least-squares fitting approach, and the values are 4.04 × 10^-20, 1.30 × 10^-20 and 1.82 × 10^-20 cm, respectively. The root-mean-square deviation δrma was calculated. Under UV light excitation, Dy^3+-doped borate glasses (LBLB) emit intense yellowish white lights. The excitation spectrum indicates that argon laser is the effective excitation source in Dy^3+-doped LBLB glasses展开更多
A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggeste...A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggested that the precursor particles had nanometer size distribution. The optical quenching of iron impurity on the phosphor powders were investigated by X-Ray powder Diffraction (XRD) and photoluminescence methods. The XRD indicates that a pure monoclinic SrAl2O4∶Eu2+, Dy3+ was formed at 1200 ℃ and iron impurity up to 296.36×10-4% had no effect on the SrAl2O4∶Eu2+, Dy3+ phase structure. However, the luminescence intensity were strongly dependent on the trace iron impurity, which might be explained that iron displace the aluminium and form Fe-O bond, which competed energy with Eu2+ and transfer red them to infrared sites.展开更多
基金financial supports from National Natural Science Foundation of China(22005174 and 52271133)。
文摘Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors.
文摘Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory, the oscillator strengths for some absorption transitions were calculated according to the absorption spectra. The intensity parameters Ω1 (t = 2, 4, 6) of Dy^3+ were determined by using a least-squares fitting approach, and the values are 4.04 × 10^-20, 1.30 × 10^-20 and 1.82 × 10^-20 cm, respectively. The root-mean-square deviation δrma was calculated. Under UV light excitation, Dy^3+-doped borate glasses (LBLB) emit intense yellowish white lights. The excitation spectrum indicates that argon laser is the effective excitation source in Dy^3+-doped LBLB glasses
基金the National Natural Science Foundation of China (20376009)
文摘A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggested that the precursor particles had nanometer size distribution. The optical quenching of iron impurity on the phosphor powders were investigated by X-Ray powder Diffraction (XRD) and photoluminescence methods. The XRD indicates that a pure monoclinic SrAl2O4∶Eu2+, Dy3+ was formed at 1200 ℃ and iron impurity up to 296.36×10-4% had no effect on the SrAl2O4∶Eu2+, Dy3+ phase structure. However, the luminescence intensity were strongly dependent on the trace iron impurity, which might be explained that iron displace the aluminium and form Fe-O bond, which competed energy with Eu2+ and transfer red them to infrared sites.