In light of the special need of nano-engineering, an ultra-large scale and high-performance molecular dynamics(MD) simulation program was implemented. In many nano-engineering processes, the free boundary condition ...In light of the special need of nano-engineering, an ultra-large scale and high-performance molecular dynamics(MD) simulation program was implemented. In many nano-engineering processes, the free boundary condition should be adopted. To meet this particular requirement, a pointer link and dynamic array data structures were employed so that both reliability and accuracy of simulation could be ensured. Using this method, one could realize the MD simulation of the nano-engineering system consisting of several million atoms per single CPU.展开更多
To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test ...To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.展开更多
Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional r...Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies.展开更多
In the software of data management system, there are some different lengths of records needed storing in an array, and the number of records often increases in use of the software. A universal data structure is presen...In the software of data management system, there are some different lengths of records needed storing in an array, and the number of records often increases in use of the software. A universal data structure is presented in the design, and it provide an unified interface for dynamic storage records in different length, so that the developers can call the unified interface directly for the data storage to simplify the design of data management system.展开更多
We introduce a geometrically reconfigurable metasurface whose artificial "atoms" will reorient within unit ceils in response to a thermal stimulus in the microwave spectrum. It can alternate between two contrasting ...We introduce a geometrically reconfigurable metasurface whose artificial "atoms" will reorient within unit ceils in response to a thermal stimulus in the microwave spectrum. It can alternate between two contrasting behaviors under different temperatures and serve as a switchable filter that allows the incident energy to be selectively transmitted or reflected with an excess of 10 dB isolation at certain frequencies for both polarizations. The ex- perimental results are consistent with the theoretical simulations, verifying the availability of an innovative method for manipulating electromagnetic waves with the merits of higher controllability for dynamic behavior and greater flexibility in the design process.展开更多
Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or ...Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or in the configuration memory. The aim of our research is to characterize self-test and repair processes in Fault Tolerant(FT) dr-FPGA systems in the presence of environmental faults and explore their interrelationships. We develop a Continuous Time Markov Chain(CTMC) model that captures the high level fail-repair processes on a dr-FPGA with periodic online Built-In Self-Test(BIST) and scrubbing to detect and repair faults with minimum latency. Simulation results reveal that given an average fault interval of 36 s, an optimum self-test interval of 48.3 s drives the system to spend 13% of its time in self-tests, remain in safe working states for 76% of its time and face risky fault-prone states for only 7% of its time. Further, we demonstrate that a well-tuned repair strategy boosts overall system availability, minimizes the occurrence of unsafe states, and accommodates a larger range of fault rates within which the system availability remains stable within 10% of its maximum level.展开更多
基金the National Natural Science Foundation of China(Nos.20435010 and 20503012)Natural Science Founda-tion of Jiangsu Province, China(No.BK2005413)
文摘In light of the special need of nano-engineering, an ultra-large scale and high-performance molecular dynamics(MD) simulation program was implemented. In many nano-engineering processes, the free boundary condition should be adopted. To meet this particular requirement, a pointer link and dynamic array data structures were employed so that both reliability and accuracy of simulation could be ensured. Using this method, one could realize the MD simulation of the nano-engineering system consisting of several million atoms per single CPU.
基金supported by Project of the National Natural Science Foundation of China (No.62073256, 61773305)the Key Science and Technology Program of Shaanxi Province (No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project (No.2020KJRC0041)。
文摘To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.
基金funded by the Special Research Fund for Seismology(201408020)the Natural Science Foundation of China (51578514,U1434210)
文摘Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies.
文摘In the software of data management system, there are some different lengths of records needed storing in an array, and the number of records often increases in use of the software. A universal data structure is presented in the design, and it provide an unified interface for dynamic storage records in different length, so that the developers can call the unified interface directly for the data storage to simplify the design of data management system.
基金supported by the National Natural Science Foundation of China(No.61401424)
文摘We introduce a geometrically reconfigurable metasurface whose artificial "atoms" will reorient within unit ceils in response to a thermal stimulus in the microwave spectrum. It can alternate between two contrasting behaviors under different temperatures and serve as a switchable filter that allows the incident energy to be selectively transmitted or reflected with an excess of 10 dB isolation at certain frequencies for both polarizations. The ex- perimental results are consistent with the theoretical simulations, verifying the availability of an innovative method for manipulating electromagnetic waves with the merits of higher controllability for dynamic behavior and greater flexibility in the design process.
文摘Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or in the configuration memory. The aim of our research is to characterize self-test and repair processes in Fault Tolerant(FT) dr-FPGA systems in the presence of environmental faults and explore their interrelationships. We develop a Continuous Time Markov Chain(CTMC) model that captures the high level fail-repair processes on a dr-FPGA with periodic online Built-In Self-Test(BIST) and scrubbing to detect and repair faults with minimum latency. Simulation results reveal that given an average fault interval of 36 s, an optimum self-test interval of 48.3 s drives the system to spend 13% of its time in self-tests, remain in safe working states for 76% of its time and face risky fault-prone states for only 7% of its time. Further, we demonstrate that a well-tuned repair strategy boosts overall system availability, minimizes the occurrence of unsafe states, and accommodates a larger range of fault rates within which the system availability remains stable within 10% of its maximum level.