期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mitigation Strategy against Cascading Failures on Social Networks 被引量:4
1
作者 YI Chengqi BAO Yuanyuan +1 位作者 JIANG Jingchi XUE Yibo 《China Communications》 SCIE CSCD 2014年第8期37-46,共10页
Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network ar... Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network are unavailable for some reasons,they are more likely to influence a large portion of social network.Therefore,an effective mitigation strategy is very critical for avoiding or reducing the impact of cascading failures.In this paper,we firstly quantify the user loads and construct the processes of cascading dynamics,then elaborate the more reasonable mechanism of sharing the extra user loads with considering the features of social networks,and further propose a novel mitigation strategy on social networks against cascading failures.Based on the realworld social network datasets,we evaluate the effectiveness and efficiency of the novel mitigation strategy.The experimental results show that this mitigation strategy can reduce the impact of cascading failures effectively and maintain the network connectivity better with lower cost.These findings are very useful for rationally advertising and may be helpful for avoiding various disasters of cascading failures on many real-world networks. 展开更多
关键词 social networks mitigationstrategy cascading failures betweennesscentrality cascading dynamics
下载PDF
Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis 被引量:2
2
作者 Jie Zhan Yuhan Wang +4 位作者 Shaodan Ma Qin Qin Ling Wang Yanbin Cai Zhimou Yang 《Bioactive Materials》 SCIE 2022年第3期120-133,共14页
Organelles are responsible for the efficient storage and transport of substances in living systems.A myriad of extracellular vesicles(EVs)acts as a bridge to exchange signaling molecules in cell-cell communication,and... Organelles are responsible for the efficient storage and transport of substances in living systems.A myriad of extracellular vesicles(EVs)acts as a bridge to exchange signaling molecules in cell-cell communication,and the highly dynamic tubulins and actins contribute to efficient intracellular substance transport.The inexhaustible cues of natural cargo delivery by organelles inspire researchers to explore the construction of biomimetic architectures for“smart”delivery carriers.Herein,we report a 10-hydroxycamptothecin(HCPT)-peptide conjugate HpYss that simulates the artificial EV-to-filament transformation process for precise liver cancer therapy.Under the sequential stimulus of extracellular alkaline phosphatase(ALP)and intracellular glutathione(GSH),HpYss proceeds via tandem self-assembly with a morphological transformation from nanoparticles to nanofibers.The experimental phase diagram elucidates the influence of ALP and GSH contents on the self-assembled nanostructures.In addition,the dynamic transformation of organelle-mimetic architectures that are formed by HpYss in HepG2 cells enables the efficient delivery of the anticancer drug HCPT to the nucleus,and the size-shape change from extracellular nanoparticles(50-100 nm)to intracellular nanofibers(4-9 nm)is verified to be of key importance for nuclear delivery.Nuclear targeting of HpYss amplifies apoptosis,thus significantly enhancing the inhibitory effect of HCPT(>10-fold)to HepG2 cells.Benefitting from the spatiotemporally controlled nanostructures,HpYss exhibited deep penetration,enhanced accumulation,and long-term retention in multicellular spheroid and xenograft models,potently abolishing liver tumor growth and preventing lung metastasis.We envision that our organelle-mimicking delivery strategy provides a novel paradigm for designing nanomedicine to cancer therapy. 展开更多
关键词 SELF-ASSEMBLY Organelle-mimicking Nuclear delivery dynamic cascade process Cancer therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部