Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris...Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.展开更多
A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an act...A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter and its accurate propeller J' -KT' and J' - Kp' curve data, functional experiments based on the simulation system were carried out. The experiment results showed that the system can correctly emulate the propeller characteristics, produce the dynamic and steady performances of the propeller under different navigation modes, and present actual load torque for electric propulsion motor.展开更多
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is propri...As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is proprietary to several companies and thus has not been disclosed.Furthermore,the relevant reports are primarily limited to the component level.The dynamic characteristics of the output when a helical rotary actuator is applied to a closed-loop system are investigated from the perspective of driving system design.Two main aspects are considered:one is to establish a reliable mathematical model and the other is to consider the effect of system parameter perturbation on the output.In this study,a detailed mechanical analysis of a helical rotary hydraulic cylinder is first performed,factors such as friction and load are considered,and an accurate dynamic model of the actuator is established.Subsequently,considering the nonlinear characteristics of pressure flow and the dynamic characteristics of the valve,a dynamic model of a valve-controlled helical rotary actuator angle closed-loop system is described based on sixth-order nonlinear state equations,which has never been reported previously.After deriving the system model,a sensitivity analysis of 23 main parameters in the model with a perturbation of 10%is performed under nine operating conditions.Finally,the system dynamics model and sensitivity analysis results are verified via a prototype experiment and co-simulation,which demonstrate the reliability of the theoretical results obtained in this study.The results provide an accurate mathematical model and analysis basis for the structural optimization or control compensation of similar systems.展开更多
A conservation equation for topological charges of phase singularities (scroll and spiral waves) in excitable media is given. It provides some topological properties of scroll (spiral) waves: for example, the top...A conservation equation for topological charges of phase singularities (scroll and spiral waves) in excitable media is given. It provides some topological properties of scroll (spiral) waves: for example, the topological charge of the generated or annihilated spiral pair must be opposite. Additionally, we obtain another equation on scroll waves, which shows that singular filaments of scroll waves occur on a set of one-dimensional curves which may be either closed loops or infinite lines.展开更多
基金supported by the National Natural Science Foundation of China(grant no.52075414).
文摘Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.
基金supported by the Fund of Shanghai Committee of Science and Technology(Grant No.11170501700)the International Cooperation and Exchange Projects of the Ministry of Science and Technology(Grant No.2012DFG71850)
文摘A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter and its accurate propeller J' -KT' and J' - Kp' curve data, functional experiments based on the simulation system were carried out. The experiment results showed that the system can correctly emulate the propeller characteristics, produce the dynamic and steady performances of the propeller under different navigation modes, and present actual load torque for electric propulsion motor.
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
基金National Natural Science Foundation of China(Grant No.51922093)Scientific Research Fund of Zhejiang Provincial Education Department of China(Grant No.Y202148352)Major Science and Technology Projects in Ningbo of China(Grant No.2019B10054).
文摘As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is proprietary to several companies and thus has not been disclosed.Furthermore,the relevant reports are primarily limited to the component level.The dynamic characteristics of the output when a helical rotary actuator is applied to a closed-loop system are investigated from the perspective of driving system design.Two main aspects are considered:one is to establish a reliable mathematical model and the other is to consider the effect of system parameter perturbation on the output.In this study,a detailed mechanical analysis of a helical rotary hydraulic cylinder is first performed,factors such as friction and load are considered,and an accurate dynamic model of the actuator is established.Subsequently,considering the nonlinear characteristics of pressure flow and the dynamic characteristics of the valve,a dynamic model of a valve-controlled helical rotary actuator angle closed-loop system is described based on sixth-order nonlinear state equations,which has never been reported previously.After deriving the system model,a sensitivity analysis of 23 main parameters in the model with a perturbation of 10%is performed under nine operating conditions.Finally,the system dynamics model and sensitivity analysis results are verified via a prototype experiment and co-simulation,which demonstrate the reliability of the theoretical results obtained in this study.The results provide an accurate mathematical model and analysis basis for the structural optimization or control compensation of similar systems.
基金Supported by the National Natural Science Foundation of China under Grant No 10675099, the Hong Kong Research Council (RGC), and the Hong Kong Baptist University Faculty Research Fund (FRG).
文摘A conservation equation for topological charges of phase singularities (scroll and spiral waves) in excitable media is given. It provides some topological properties of scroll (spiral) waves: for example, the topological charge of the generated or annihilated spiral pair must be opposite. Additionally, we obtain another equation on scroll waves, which shows that singular filaments of scroll waves occur on a set of one-dimensional curves which may be either closed loops or infinite lines.