期刊文献+
共找到1,623篇文章
< 1 2 82 >
每页显示 20 50 100
A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification
1
作者 Tsu-Yang Wu Haonan Li +1 位作者 Saru Kumari Chien-Ming Chen 《Computers, Materials & Continua》 SCIE EI 2024年第4期19-46,共28页
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol... Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification. 展开更多
关键词 Adaptive Fick’s law algorithm spectral convolutional neural network metaheuristic algorithm intelligent optimization algorithm hyperspectral image classification
下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
2
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) convolutional neural network(CNN)
下载PDF
Vehicle Plate Number Localization Using Memetic Algorithms and Convolutional Neural Networks
3
作者 Gibrael Abosamra 《Computers, Materials & Continua》 SCIE EI 2023年第2期3539-3560,共22页
This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input ... This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input image is the most important and difficult step in the detection of VPLN,a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects(CCO)and hence enriches the solution space with more solution candidates.Due to the combination of the outputs of the three binarization techniques,many CCOs are produced into the output pool from which one or more sequences are to be selected as candidate solutions.The pool is filtered and submitted to a new memetic algorithm to select the best fit sequence of CCOs based on an objective distance between the tested sequence and the defined geometrical relationship matrix that represents the layout of the VPLN symbols inside the concerned plate prototype.Using any of the previous versions will give moderate results but with very low speed.Hence,a new local search is added as a memetic operator to increase the fitness of the best chromosomes based on the linear arrangement of the license plate symbols.The memetic operator speeds up the convergence to the best solution and hence compensates for the overhead of the used hybrid binarization techniques and allows for real-time detection especially after using GPUs in implementing most of the used techniques.Also,a deep convolutional network is used to detect false positives to prevent fake detection of non-plate text or similar patterns.Various image samples with a wide range of scale,orientation,and illumination conditions have been experimented with to verify the effect of the new improvements.Encouraging results with 97.55%detection precision have been reported using the recent challenging public Chinese City Parking Dataset(CCPD)outperforming the author of the dataset by 3.05%and the state-of-the-art technique by 1.45%. 展开更多
关键词 Genetic algorithms memetic algorithm convolutional neural network object detection adaptive binarization filters license plate detection
下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
4
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 Non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
下载PDF
Micro Calcification Detection in Mammogram Images Using Contiguous Convolutional Neural Network Algorithm
5
作者 P.Gomathi C.Muniraj P.S.Periasamy 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1887-1899,共13页
The mortality rate decreases as the early detection of Breast Cancer(BC)methods are emerging very fast,and when the starting stage of BC is detected,it is curable.The early detection of the disease depends on the imag... The mortality rate decreases as the early detection of Breast Cancer(BC)methods are emerging very fast,and when the starting stage of BC is detected,it is curable.The early detection of the disease depends on the image processing techniques,and it is used to identify the disease easily and accurately,especially the micro calcifications are visible on mammography when they are 0.1 mm or bigger,and cancer cells are about 0.03 mm,which is crucial for identifying in the BC area.To achieve this micro calcification in the BC images,it is necessary to focus on the four main steps presented in this work.There are three significant stages of the process assigned to find the BC using a thermal image;the image processing procedures are described below.In the first stage of the process,the Gaussian filter technique is implemented to magnify the screening image.During the second stage,BC detection is separated from the pre-processed image.The Proposed Versatile K-means clustering(VKC)algorithm with segmentation is used to identify the BC detection form of the screening image.The centroids are then recalculated using proposed VKC,which takes the mean of all data points allocated to that centroid’s cluster,lowering the overall intracluster variance in comparison to the prior phase.The“means”in K-means refers to the process of averaging the data and determining a new centroid.This process eliminates unnecessary areas of interest.First,the mammogram screening image information is taken from the patient and begins with the Contiguous Convolutional Neural Network(CCNN)method.The proposed CCNN is used to classify the Micro calcification in the BC spot using the feature values is the fourth stage of the process.The assess the presence of high-definition digital infrared thermography technology and knowledge base and suggests that future diagnostic and treatment services in breast cancer imaging will be developed.The use of sophisticated CCNN techniques in thermography is being developed to attain a greater level of consistency.The implemented(CCNN)technique’s performance is examined with different classification parameters like Recall,Precision,F-measure and accuracy.Finally,the Breast Cancer stages will be classified based on the true positive and true negative values. 展开更多
关键词 Contiguous convolutional neural network(CCNN) Gaussian filter Versatile K-Means Clustering(VKC)algorithm mammogram cancer detection
下载PDF
Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based onMulti-Scale and Multi Feature Convolution Neural Network
6
作者 Wen Long Bin Zhu +3 位作者 Huaizheng Li Yan Zhu Zhiqiang Chen Gang Cheng 《Energy Engineering》 EI 2023年第5期1253-1269,共17页
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci... There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved. 展开更多
关键词 Multiscale and multi feature convolution neural network distributed energy storage at grid side cloud group end region layered time-sharing configuration algorithm
下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
7
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 Relation extraction graph convolutional neural networks dependency tree dynamic structure attention
下载PDF
Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models
8
作者 Mohammad Sadegh Barkhordari Danial Jahed Armaghani Panagiotis G.Asteris 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期835-855,共21页
The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subje... The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged. 展开更多
关键词 Machine learning ensemble learning algorithms convolutional neural network damage assessment structural damage
下载PDF
Developing a Recognition System for Classifying COVID-19 Using a Convolutional Neural Network Algorithm 被引量:1
9
作者 Fawaz Waselallah Alsaade Theyazn H.H.Aldhyani Mosleh Hmoud Al-Adhaileh 《Computers, Materials & Continua》 SCIE EI 2021年第7期805-819,共15页
The COVID-19 pandemic poses an additional serious public health threat due to little or no pre-existing human immunity,and developing a system to identify COVID-19 in its early stages will save millions of lives.This ... The COVID-19 pandemic poses an additional serious public health threat due to little or no pre-existing human immunity,and developing a system to identify COVID-19 in its early stages will save millions of lives.This study applied support vector machine(SVM),k-nearest neighbor(K-NN)and deep learning convolutional neural network(CNN)algorithms to classify and detect COVID-19 using chest X-ray radiographs.To test the proposed system,chest X-ray radiographs and CT images were collected from different standard databases,which contained 95 normal images,140 COVID-19 images and 10 SARS images.Two scenarios were considered to develop a system for predicting COVID-19.In the first scenario,the Gaussian filter was applied to remove noise from the chest X-ray radiograph images,and then the adaptive region growing technique was used to segment the region of interest from the chest X-ray radiographs.After segmentation,a hybrid feature extraction composed of 2D-DWT and gray level co-occurrence matrix was utilized to extract the features significant for detecting COVID-19.These features were processed using SVM and K-NN.In the second scenario,a CNN transfer model(ResNet 50)was used to detect COVID-19.The system was examined and evaluated through multiclass statistical analysis,and the empirical results of the analysis found significant values of 97.14%,99.34%,99.26%,99.26%and 99.40%for accuracy,specificity,sensitivity,recall and AUC,respectively.Thus,the CNN model showed significant success;it achieved optimal accuracy,effectiveness and robustness for detecting COVID-19. 展开更多
关键词 Machine-learning algorithm recognition system COVID-19 convolutional neural network
下载PDF
Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization 被引量:1
10
作者 Siyuan Xu Xiaoxian Zhu +7 位作者 Ji Wang Yuanfeng Li Yitan Gao Kun Zhao Jiangfeng Zhu Dacheng Zhang Yunlin Chen Zhiyi Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期586-590,共5页
A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically ge... A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically generated TGFROG traces to complete supervised trainings of the convolutional neural networks,then use similarly generated traces not included in the training dataset to test how well the networks are trained.Accurate retrieval of such traces by the neural network is realized.In our case,we find that networks with exponential linear unit(ELU) activation function perform better than those with leaky rectified linear unit(LRELU) and scaled exponential linear unit(SELU).Finally,the issues that need to be addressed for the retrieval of experimental data by this method are discussed. 展开更多
关键词 transient-grating frequency-resolved optical gating convolutional neural network activation function phase retrieval algorithm
下载PDF
Research on High Resolution Satellite Image Classification Algorithm based on Convolution Neural Network 被引量:2
11
作者 Gaiping He 《International Journal of Technology Management》 2016年第9期53-55,共3页
Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis... Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image. 展开更多
关键词 High Resolution Satellite Image Classification convolution neural network Clustering algorithm.
下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network
12
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
下载PDF
An improved micro-expression recognition algorithm of 3D convolutional neural network
13
作者 WU Jin SHI Qianwen +2 位作者 XI Meng WANG Lei ZENG Huadie 《High Technology Letters》 EI CAS 2022年第1期63-71,共9页
The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dim... The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate. 展开更多
关键词 micro-expression recognition deep learning three-dimensional convolutional neural network(3D-CNN) batch normalization(BN)algorithm DROPOUT
下载PDF
Dynamic Bandwidth Allocation Technique in ATM Networks Based on Fuzzy Neural Networks and Genetic Algorithm
14
作者 Zhang Liangjie Li Yanda Wang Pu (Dept of Automation Tsinghua University, Beijing 100084) 《通信学报》 EI CSCD 北大核心 1997年第3期10-17,共8页
DynamicBandwidthAlocationTechniqueinATMNetworksBasedonFuzyNeuralNetworksandGeneticAlgorithm①ZhangLiangjieLiY... DynamicBandwidthAlocationTechniqueinATMNetworksBasedonFuzyNeuralNetworksandGeneticAlgorithm①ZhangLiangjieLiYandaWangPu(Deptof... 展开更多
关键词 模糊神经网 动态带宽分配 异步传输网 基因算法
下载PDF
Multiphase convolutional dense network for the classification of focal liver lesions on dynamic contrast-enhanced computed tomography 被引量:5
15
作者 Su-E Cao Lin-Qi Zhang +10 位作者 Si-Chi Kuang Wen-Qi Shi Bing Hu Si-Dong Xie Yi-Nan Chen Hui Liu Si-Min Chen Ting Jiang Meng Ye Han-Xi Zhang Jin Wang 《World Journal of Gastroenterology》 SCIE CAS 2020年第25期3660-3672,共13页
BACKGROUND The accurate classification of focal liver lesions(FLLs)is essential to properly guide treatment options and predict prognosis.Dynamic contrast-enhanced computed tomography(DCE-CT)is still the cornerstone i... BACKGROUND The accurate classification of focal liver lesions(FLLs)is essential to properly guide treatment options and predict prognosis.Dynamic contrast-enhanced computed tomography(DCE-CT)is still the cornerstone in the exact classification of FLLs due to its noninvasive nature,high scanning speed,and high-density resolution.Since their recent development,convolutional neural network-based deep learning techniques has been recognized to have high potential for image recognition tasks.AIM To develop and evaluate an automated multiphase convolutional dense network(MP-CDN)to classify FLLs on multiphase CT.METHODS A total of 517 FLLs scanned on a 320-detector CT scanner using a four-phase DCECT imaging protocol(including precontrast phase,arterial phase,portal venous phase,and delayed phase)from 2012 to 2017 were retrospectively enrolled.FLLs were classified into four categories:Category A,hepatocellular carcinoma(HCC);category B,liver metastases;category C,benign non-inflammatory FLLs including hemangiomas,focal nodular hyperplasias and adenomas;and category D,hepatic abscesses.Each category was split into a training set and test set in an approximate 8:2 ratio.An MP-CDN classifier with a sequential input of the fourphase CT images was developed to automatically classify FLLs.The classification performance of the model was evaluated on the test set;the accuracy and specificity were calculated from the confusion matrix,and the area under the receiver operating characteristic curve(AUC)was calculated from the SoftMax probability outputted from the last layer of the MP-CDN.RESULTS A total of 410 FLLs were used for training and 107 FLLs were used for testing.The mean classification accuracy of the test set was 81.3%(87/107).The accuracy/specificity of distinguishing each category from the others were 0.916/0.964,0.925/0.905,0.860/0.918,and 0.925/0.963 for HCC,metastases,benign non-inflammatory FLLs,and abscesses on the test set,respectively.The AUC(95%confidence interval)for differentiating each category from the others was 0.92(0.837-0.992),0.99(0.967-1.00),0.88(0.795-0.955)and 0.96(0.914-0.996)for HCC,metastases,benign non-inflammatory FLLs,and abscesses on the test set,respectively.CONCLUSION MP-CDN accurately classified FLLs detected on four-phase CT as HCC,metastases,benign non-inflammatory FLLs and hepatic abscesses and may assist radiologists in identifying the different types of FLLs. 展开更多
关键词 Deep learning convolutional neural networks Focal liver lesions CLASSIFICATION Multiphase computed tomography dynamic enhancement pattern
下载PDF
Individual Dairy Cattle Recognition Based on Deep Convolutional Neural Network 被引量:2
16
作者 ZHANG Mandun SHAN Xinyuan +3 位作者 YU Jinsu GUO Yingchun LI Ruiwen XU Mingquan 《Journal of Donghua University(English Edition)》 EI CAS 2018年第2期107-112,共6页
Image based individual dairy cattle recognition has gained much attention recently. In order to further improve the accuracy of individual dairy cattle recognition, an algorithm based on deep convolutional neural netw... Image based individual dairy cattle recognition has gained much attention recently. In order to further improve the accuracy of individual dairy cattle recognition, an algorithm based on deep convolutional neural network( DCNN) is proposed in this paper,which enables automatic feature extraction and classification that outperforms traditional hand craft features. Through making multigroup comparison experiments including different network layers,different sizes of convolution kernel and different feature dimensions in full connection layer,we demonstrate that the proposed method is suitable for dairy cattle classification. The experimental results show that the accuracy is significantly higher compared to two traditional image processing algorithms: scale invariant feature transform( SIFT) algorithm and bag of feature( BOF) model. 展开更多
关键词 DEEP learning DEEP convolutional neural network(dcnn) DAIRY CATTLE INDIVIDUAL RECOGNITION
下载PDF
Predicting Concrete Compressive Strength Using Deep Convolutional Neural Network Based on Image Characteristics 被引量:2
17
作者 Sanghyo Lee Yonghan Ahn Ha Young Kim 《Computers, Materials & Continua》 SCIE EI 2020年第10期1-17,共17页
In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera an... In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN.Thereafter,training,validation,and testing of the DCNNs were performed based on the DSLR camera and microscope image data.Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy.The accuracy of the DSLR-derived image data was attributed to the relatively wider range of the DSLR camera,which was beneficial for extracting a larger number of features.Moreover,the DSLR camera procured more realistic images than the microscope.Thus,when the compressive strength of concrete was evaluated using the DCNN employing a DSLR camera,time and cost were reduced,whereas the usefulness increased.Furthermore,an indirect comparison of the accuracy of the DCNN with that of existing non-destructive methods for evaluating the strength of concrete proved the reliability of DCNN-derived concrete strength predictions.In addition,it was determined that the DCNN used for concrete strength evaluations in this study can be further expanded to detect and evaluate various deteriorative factors that affect the durability of structures,such as salt damage,carbonation,sulfation,corrosion,and freezing-thawing. 展开更多
关键词 Deep convolutional neural network(dcnn) non-destructive testing(NDT) concrete compressive strength digital single-lens reflex(DSLR)camera MICROSCOPE
下载PDF
A Novel Forgery Detection in Image Frames of the Videos Using Enhanced Convolutional Neural Network in Face Images 被引量:2
18
作者 S.Velliangiri J.Premalatha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期625-645,共21页
Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kin... Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods. 展开更多
关键词 Adaptive Rood Pattern Search(ARPS) Improved Crow Search algorithm(ICSA) Enhanced convolutional neural network(ECNN) Viola Jones algorithm Speeded Up Robust Feature(SURF)
下载PDF
基于DCNN网络及Self-Attention-BiGRU机制的轴承剩余寿命预测
19
作者 刘森 刘美 +2 位作者 贺银超 韩惠子 孟亚男 《机电工程》 CAS 北大核心 2024年第5期786-796,共11页
深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiG... 深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiGRU)以及自注意力机制(Self-Attention)三种模块的滚动轴承剩余使用寿命预测模型。首先,利用DCNN网络对原始振动信号的时域特征、频域特征进行了提取;然后,使用不确定量化的方法对提取到的特征进行了评价和筛选,利用筛选过后的特征构建了新的替代特征集;最后,利用Self-Attention-BiGRU网络对轴承的剩余使用寿命进行了预测,并在IEEE PHM2012数据集上进行了验证。实验结果表明:相较于BiGRU、GRU和BiLSTM三种模型的预测结果,基于DCNN及Self-Attention-BiGRU方法的预测结果最优,两项误差值:平均绝对误差(MAE)、均方根误差(RMSE)最低,其中工况一的一号轴承RUL预测的MAE值相较于BiGRU、GRU以及BiLSTM网络分别下降了7.0%、7.4%和6.5%,RMSE值相较于其他三种模型分别下降了7.6%、8.4%和6.9%,预测的Score值最高,分值为0.985。通过不同数据集的划分,证明了该方法在轴承RUL预测时的强鲁棒性。实验结果验证了基于DCNN网络及Self-Attention-BiGRU模型在轴承剩余使用寿命预测中的有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 双向门控循环单元 不确定量化 自注意力机制 深度卷积神经网络 预测与健康管理
下载PDF
基于RIME和1DCNN-LSTM-Attention的无创血糖预测模型研究
20
作者 贺义博 靳鸿 +1 位作者 周春 屈盛玉 《现代电子技术》 北大核心 2024年第18期83-88,共6页
实现无创血糖检测对于糖尿病患者来说具有重要意义,然而目前市面上的无创血糖仪存在检测精度不高的问题。为了提高无创血糖检测的准确度,基于近红外无创血糖检测仪,构建了1DCNN-LSTM-Attention混合预测模型,同时引入了霜冰优化算法(RIME... 实现无创血糖检测对于糖尿病患者来说具有重要意义,然而目前市面上的无创血糖仪存在检测精度不高的问题。为了提高无创血糖检测的准确度,基于近红外无创血糖检测仪,构建了1DCNN-LSTM-Attention混合预测模型,同时引入了霜冰优化算法(RIME)。该模型通过一维卷积神经网络(1DCNN)提取数据中的局部特征,将所提取的特征向量作为长短期记忆(LSTM)网络的输入,捕捉数据中的依赖关系;采用注意力机制(Attention)为LSTM的输出赋予不同的权重,增强关键信息提取;通过RIME算法优化模型参数,避免陷入局部最优解。结果表明,引入RIME的1DCNN-LSTM-Attention混合模型预测效果优于1DCNN、LSTM、1DCNN-LSTM、1DCNN-LSTM-Attention等模型,预测血糖值与有创血糖值的平均绝对误差为0.121 0,均方误差为0.018 6,相关系数达到了0.982 3。该模型有助于提高近红外无创血糖检测的精确度和可靠性。 展开更多
关键词 近红外无创血糖检测 一维卷积神经网络 霜冰优化算法 长短期记忆网络 注意力机制 参数优化
下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部