We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with ...We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases.展开更多
文摘We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases.