The vibration instability of the nonlinear dynamic system of the rolls considering the structural clearance was theoretically investigated,which is caused by the roll assembly accuracy deviation in the hot rolling pro...The vibration instability of the nonlinear dynamic system of the rolls considering the structural clearance was theoretically investigated,which is caused by the roll assembly accuracy deviation in the hot rolling process.Firstly,the dynamic rolling force model was established based on the Wekbrod model under the influence of the roll grinding deviation and the stability of the deformation zone.Further,the horizontal and vertical direction coupling dynamic model of the work roll was established considering the structural clearance between the roll and mill frame.Then,the nonlinear dynamic equation was solved by the Runge-Kutta method.The simulation results show that the dynamic system presents the nonlinear vibration characteristics,which shows that the instability of the system is a slowly varying response process with the characteristics of self-excited vibration and forced vibration.Finally,the comparison results show the consistency between the simulation and the test.展开更多
A dynamic rolling force model with multi-parametric excitations and multi-frequency external excitations caused by entry thickness fuctuation of strip was established.Based on the dynamic rolling force,a nonlinear ver...A dynamic rolling force model with multi-parametric excitations and multi-frequency external excitations caused by entry thickness fuctuation of strip was established.Based on the dynamic rolling force,a nonlinear vertical vibration model with multi-parametric excitations and multi-frequency external excitations was established.The method of multiple scales was used to solve the amplitude-frequency characteristic equation of primary resonance of the nonlinear vibration system of a rolling mill.The transition set and the topology structure of systematic global bifurcation were obtained by using the singularity theory.Finally,primary resonance characteristics of the system under entry thickness fuctuation of strip were analyzed by using actual parameters of the rolling mill.The global bifurcation curves with the change of amplitude and frequency of entry thickness fuctuation of strip were obtained by using numerical simulation,and many dynamic behaviors were found such as single-cycle motion,multi-cycle motion and chaotic motion,which can provide a theoretical reference for further restraining the vibration of a rolling mill.展开更多
Considering the dynamic influence of the roll vibration on the lubricant film thickness in the rolling deformation area,nonlinear dynamic rolling forces related to film thickness in the vertical and horizontal directi...Considering the dynamic influence of the roll vibration on the lubricant film thickness in the rolling deformation area,nonlinear dynamic rolling forces related to film thickness in the vertical and horizontal directions were obtained based on the Karman balance theory.Based on these dynamic rolling forces and the mechanical vibration of the rolling mill,a vertical-horizontal coupling nonlinear vibration dynamic model was established.The amplitude-frequency equation of the main resonance was derived by using the multiple-scale method.At last,the parameters of the 1780 rolling mill were used for numerical simulation,and the time-domain response curves of the system’s vibration displacement and lubricating film thickness under the steady and unsteady conditions were analyzed.The influences of parameters such as interface contact ratio,nonlinear parameters and external disturbances on the primary resonance frequency characteristics were obtained,which provided a theoretical reference for the suppression of rolling mill vibration.展开更多
The roll motions are influenced by significant viscous effects such as the flow separation.The 3D simulations of free decay roll motions for the ship model DTMB 5512 are carried out by Reynold averaged NavierStokes(RA...The roll motions are influenced by significant viscous effects such as the flow separation.The 3D simulations of free decay roll motions for the ship model DTMB 5512 are carried out by Reynold averaged NavierStokes(RANS) method based on the dynamic mesh technique.A new moving mesh technique is adopted and discussed in details for the present simulations.The purpose of the research is to obtain accurate numerical prediction for roll motions with their respective numerical/modeling errors and uncertainties.Errors and uncertainties are estimated by performing the modern verification and validation(V&V) procedures.Simulation results for the free-floating surface combatant are used to calculate the linear,nonlinear damping coefficients and resonant frequencies including a wide range of forward speed.The present work can provide a useful reference to calculate roll damping by computational fluid dynamics(CFD) method and simulate a general ship motions in waves.展开更多
基金supportedby Regional Joint Development Fund (No.U20A20289)Project of Leading Local Science and Technology Development Fund (No.206Z1601G)+1 种基金Innovation ResearchGroupProjectof Hebei Province (No.E2021203011)Innovation Funding Project for Graduate Students in Hebei Province (No.CXZZBS2020054).
文摘The vibration instability of the nonlinear dynamic system of the rolls considering the structural clearance was theoretically investigated,which is caused by the roll assembly accuracy deviation in the hot rolling process.Firstly,the dynamic rolling force model was established based on the Wekbrod model under the influence of the roll grinding deviation and the stability of the deformation zone.Further,the horizontal and vertical direction coupling dynamic model of the work roll was established considering the structural clearance between the roll and mill frame.Then,the nonlinear dynamic equation was solved by the Runge-Kutta method.The simulation results show that the dynamic system presents the nonlinear vibration characteristics,which shows that the instability of the system is a slowly varying response process with the characteristics of self-excited vibration and forced vibration.Finally,the comparison results show the consistency between the simulation and the test.
基金This research is supported by the National Natural Science Foundation of China(Grant No.51405068)Natural Science Foundation of Hebei Province of China(Grant No.E2019203146)Technology Research Project of Colleges and Universities of Hebei Province of China(Grant No.2014202).
文摘A dynamic rolling force model with multi-parametric excitations and multi-frequency external excitations caused by entry thickness fuctuation of strip was established.Based on the dynamic rolling force,a nonlinear vertical vibration model with multi-parametric excitations and multi-frequency external excitations was established.The method of multiple scales was used to solve the amplitude-frequency characteristic equation of primary resonance of the nonlinear vibration system of a rolling mill.The transition set and the topology structure of systematic global bifurcation were obtained by using the singularity theory.Finally,primary resonance characteristics of the system under entry thickness fuctuation of strip were analyzed by using actual parameters of the rolling mill.The global bifurcation curves with the change of amplitude and frequency of entry thickness fuctuation of strip were obtained by using numerical simulation,and many dynamic behaviors were found such as single-cycle motion,multi-cycle motion and chaotic motion,which can provide a theoretical reference for further restraining the vibration of a rolling mill.
基金This research is supported by the National Natural Science Foundation of China(Grant Nos.61973262 and 51405068)the Natural Science Foundation of Hebei Province of China(Grant No.E2019203146).
文摘Considering the dynamic influence of the roll vibration on the lubricant film thickness in the rolling deformation area,nonlinear dynamic rolling forces related to film thickness in the vertical and horizontal directions were obtained based on the Karman balance theory.Based on these dynamic rolling forces and the mechanical vibration of the rolling mill,a vertical-horizontal coupling nonlinear vibration dynamic model was established.The amplitude-frequency equation of the main resonance was derived by using the multiple-scale method.At last,the parameters of the 1780 rolling mill were used for numerical simulation,and the time-domain response curves of the system’s vibration displacement and lubricating film thickness under the steady and unsteady conditions were analyzed.The influences of parameters such as interface contact ratio,nonlinear parameters and external disturbances on the primary resonance frequency characteristics were obtained,which provided a theoretical reference for the suppression of rolling mill vibration.
基金the National Natural Science Foundation of China(No.51579147)
文摘The roll motions are influenced by significant viscous effects such as the flow separation.The 3D simulations of free decay roll motions for the ship model DTMB 5512 are carried out by Reynold averaged NavierStokes(RANS) method based on the dynamic mesh technique.A new moving mesh technique is adopted and discussed in details for the present simulations.The purpose of the research is to obtain accurate numerical prediction for roll motions with their respective numerical/modeling errors and uncertainties.Errors and uncertainties are estimated by performing the modern verification and validation(V&V) procedures.Simulation results for the free-floating surface combatant are used to calculate the linear,nonlinear damping coefficients and resonant frequencies including a wide range of forward speed.The present work can provide a useful reference to calculate roll damping by computational fluid dynamics(CFD) method and simulate a general ship motions in waves.