期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads 被引量:1
1
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
下载PDF
Energy mechanism of bolt supporting effect to fissured rock under static and dynamic loads in deep coal mines 被引量:1
2
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Shenglong Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期371-384,共14页
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured... The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions. 展开更多
关键词 Static and dynamic loads Anchored rock Energy absorption Anchoring angle Engineering verification
下载PDF
Dynamic mechanical characteristics of deep Jinping marble in complex stress environments
3
作者 Chendi Lou Heping Xie +6 位作者 Ru Zhang Hai Ren Hao Luo Kun Xiao Yuan Peng Qiang Tan Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期630-644,共15页
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ... To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth. 展开更多
关键词 Rock mechanics Split-Hopkinson pressure bar Coupled static‒dynamic loading Different depths Holmquist-Johnson-Cook(HJC)model
下载PDF
Effects of reservoir fluids on sand packs consolidated by furan and epoxy resins:Static and dynamic states
4
作者 Mohammad Nabi Tabbakhzadeh Feridun Esmaeilzadeh +1 位作者 Dariush Mowla Reza Zabihi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4504-4514,共11页
One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the flu... One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again. 展开更多
关键词 Chemical sand consolidation Brine Flow rate Static and dynamic states Crude oil Compressive strength Permeability Young’s modulus
下载PDF
Influence of static cartoons combined with dynamic virtual environments on preoperative anxiety of preschool-aged children undergoing surgery
5
作者 Ya-Lin Zhang Qi-Ying Zhou +3 位作者 Peng Zhang Lin-Feng Huang Li Jin Zhi-Guo Zhou 《World Journal of Clinical Cases》 SCIE 2024年第22期4947-4955,共9页
BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons comb... BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons combined with dynamic virtual environments on preoperative anxiety and anesthesia induction compliance in preschool-aged children undergoing surgery.METHODS One hundred and sixteen preschool-aged children were selected and assigned to the drug(n=37),intervention(n=40),and control(n=39)groups.All the children received routine preoperative checkups and nursing before being transferred to the preoperative preparation room on the day of the operation.The drug group received 0.5 mg/kg midazolam and the intervention group treatment consisting of static cartoons combined with dynamic virtual environments.The control group received no intervention.The modified Yale Preoperative Anxiety Scale was used to evaluate the children’s anxiety level on the day before surgery(T0),before leaving the preoperative preparation room(T1),when entering the operating room(T2),and at anesthesia induction(T3).Compliance during anesthesia induction(T3)was evaluated using the Induction Compliance Checklist(ICC).Changes in mean arterial pressure(MAP),heart rate(HR),and respiratory rate(RR)were also recorded at each time point.RESULTS The anxiety scores of the three groups increased variously at T1 and T2.At T3,both the drug and intervention groups had similar anxiety scores,both of which were lower than those in the control group.At T1 and T2,MAP,HR,and RR of the three groups increased.The drug and control groups had significantly higher MAP and RR than the intervention group at T2.At T3,the MAP,HR,and RR of the drug group decreased and were significantly lower than those in the control group but were comparable to those in the intervention group.Both the drug and intervention groups had similar ICC scores and duration of anesthesia induction(T3),both of which were higher than those of the control group.CONCLUSION Combining static cartoons with dynamic virtual environments as effective as medication,specifically midazolam,in reducing preoperative anxiety and fear in preschool-aged children.This approach also improve their compliance during anesthesia induction and helped maintain their stable vital signs. 展开更多
关键词 PRESCHOOL Children Static cartoons combined with dynamic virtual environments Preoperative anxiety COMPLIANCE Anesthesia induction
下载PDF
Elimination, Kinetics and Thermodynamics of Fe(II) Ions by Adsorption in Static and Dynamic Conditions on Activated Carbons in Aqueous Media
6
作者 Spenseur Bouassa Mougnala Charly Mve Mfoumou +5 位作者 Berthy Lionel Mbouiti Pradel Tonda-Mikiela Francis Ngoye Ferdinand Evoung Evoung Jean Aubin Ondo Guy Raymond Feuya Tchouya 《Journal of Geoscience and Environment Protection》 2024年第10期181-203,共23页
This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared... This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol). 展开更多
关键词 Palm Nut Shells Activated Carbon Removal FE(II) Static and dynamic Adsorption KINETICS Thermodynamics
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas 被引量:1
7
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Static and dynamic mechanical behaviour of ECO-RPC 被引量:2
8
作者 赖建中 孙伟 +1 位作者 林玮 金祖权 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期197-202,共6页
Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacemen... Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacement of ground fine quartz sand with natural fine aggregate.The effect of steel fiber volume fraction and curing ages on the static mechanical behaviour ofECO-RPC was studied. Using the split Hopkinson pressure bar technique, the dynamic mechanicalbehaviour of ECO-RPC was investigated under different strain rates. The results show that the staticmechanical behaviour of ECO-RPC increases with the increase of steel fiber volume fraction andcuring ages. The type of ECO-RPC with the substitution of 25% ultra-fine slag, 25% ultra-fine flyash and 10% silica fume is better than the others with compressive strength, flexural strength, andfracture energy more than 200 MPa, 60 MPa and 30 kJ/m^2, respectively. ECO-RPC has excellent strainrate stiffening effects under dynamic load. Its peak stress, peak strain and the area understrain-stress curve increase with the increase of strain rate. Its fracture pattern changes frombrittleness to toughness under high strain rates. 展开更多
关键词 ecological reactive powder concrete (ECO-RPC) industrial waste powder interfacial bond strength fracture energy static and dynamic mechanical behaviour high strainrate
下载PDF
Optimal design of the fillet weld fastening the wind turbine column
9
作者 Imre Timár István W.Árpád 《China Welding》 CAS 2024年第3期39-43,共5页
This paper deals with the optimal design of the fillet weld of wind turbine column subjected to bending moment.Under the premise of determined the force acting on the column,in order to further optimize the fillet wel... This paper deals with the optimal design of the fillet weld of wind turbine column subjected to bending moment.Under the premise of determined the force acting on the column,in order to further optimize the fillet weld,the minimum volume of corner seam was determined in the case of non-linear design constraints.The constraints relate to the maximal stresses and fatigue of welding seam.A numerical solution to this problem is given by genetic optimization algorithm.The optimisation calculation result indicated that the active condition(constraint)was the stress from the static load.Useful and meaningful information is provided for the engineering field. 展开更多
关键词 fillet weld optimal design genetic algorithm static and dynamic load
下载PDF
Impact of Earthquake Action on the Design and Sizing of Jointed Masonry Structures in South Kivu, DRC
10
作者 Edmond Dawak Fezeu Marcelline Blanche Manjia +3 位作者 Chérif Bishweka Biryondeke Patient Kubuya Binwa Élodie Rufine Zang Chrispin Pettang 《Open Journal of Civil Engineering》 2024年第1期127-153,共27页
This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in t... This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall. 展开更多
关键词 Jointed Masonry Weight-Bearing Structures Seismic Action Eurocode 7 and 8 Static and dynamic Analysis
下载PDF
NMR-based damage characterisation of backfill material in host rock under dynamic loading 被引量:22
11
作者 Binglei Li Jiquan Lan +2 位作者 Guangyao Si Guopeng Lin Liuqing Hu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期329-335,共7页
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o... It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading. 展开更多
关键词 dynamic loading Backfill-country rock system True triaxial test Coupled static and dynamic loads Nuclear magnetic resonance(NMR) Damage evolution
下载PDF
The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces 被引量:6
12
作者 M.Mojahedi M.T.Ahmadian K.Firoozbakhsh 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第6期851-863,共13页
The nonlinear dynamic and static deflection of a micro/nano gyroscope under DC voltages and base rotation are investigated. The gyroscope undertakes two cou- pled bending motions along the drive and sense directions a... The nonlinear dynamic and static deflection of a micro/nano gyroscope under DC voltages and base rotation are investigated. The gyroscope undertakes two cou- pled bending motions along the drive and sense directions and subjected to electrostatic actuations and intermolecular forces. The nonlinear governing equations of motion for the system with the effect of electrostatic force, intermolecular tractions and base rotation are derived using extended Hamilton principle. Under constant voltage, the gyroscope finds the preformed shape. First, the deflection of the rnicro/nano gyroscope under electrostatic forces is obtained by static and dynamic analyses. Furthermore, the static and dynamic in- stability of the system are investigated. Afterward the oscillatory behavior of the pre-deformed micro/nano gyroscope around equilibrium is studied. The effects of intermolecular and nonlinear parameters on the static and dynamic de- flection, natural frequencies and instability of the micro/nano gyroscope are studied. The presented model can be used to exactly determine static and the dynamic behavior of vibratory micro/nano gyroscopes. 展开更多
关键词 NANO-STRUCTURES MICROSTRUCTURES Static dynamic
下载PDF
Stability analysis of rib pillars in highwall mining under dynamic and static loads in open‑pit coal mine 被引量:5
13
作者 Haoshuai Wu Yanlong Chen +3 位作者 Haoyan Lv Qihang Xie Yuanguang Chen Jun Gu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第3期120-135,共16页
The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static l... The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static loads of the overlying strata is not clear,which restricts the safe and efcient application of highwall mining.In this study,the load-bearing model of the rib pillar in highwall mining was established,the cusp catastrophe theory and the safety coefcient of the rib pillar were considered,and the criterion equations of the rib pillar stability were proposed.Based on the limit equilibrium theory,the limit stress of the rib pillar was analyzed,and the calculation equations of plastic zone width of the rib pillar in highwall mining were obtained.Based on the Winkler foundation beam theory,the elastic foundation beam model composed of the rib pillar and roof under the highwall mining was established,and the calculation equations for the compression of the rib pillar under dynamic and static loads were developed.The results showed that with the increase of the rib pillar width,the total compression of the rib pillar under dynamic and static loads decreases nonlinearly,and the compression of the rib pillar caused by static loads of the overlying strata and trucks has a decisive role.Numerical simulation and theoretical calculation were also performed in this study.In the numerical simulation,the coal seam with a buried depth of 122 m and a thickness of 3 m is mined by highwall mining techniques.According to the established rib pillar instability model of the highwall mining system,it is found that when the mining opening width is 3 m,the reasonable width of the rib pillar is at least 1.3 m,and the safety factor of the rib pillar is 1.3.The numerical simulation results are in good agreement with the results of theoretical calculation,which verifes the feasibility of the theoretical analysis of the rib pillar stability.This research provides a reference for the stability analysis of rib pillars under highwall mining. 展开更多
关键词 Open-pit coal mine dynamic and static loads Highwall mining Rib pillar Catastrophe instability
下载PDF
A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load 被引量:9
14
作者 Lihai Tan Ting Ren +1 位作者 Xiaohan Yang Xueqiu He 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期791-797,共7页
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles ... To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure. 展开更多
关键词 Static–dynamic COUPLED loads SHPB COAL BEDDING angle Strain energy PFC2D
下载PDF
Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads 被引量:23
15
作者 XIAO Peng LI Di-yuan +3 位作者 ZHAO Guo-yan ZHU Quan-qi LIU Huan-xin ZHANG Chun-shun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2945-2958,共14页
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ... The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions. 展开更多
关键词 split Hopkinson pressure bar(SHPB)system digital image correlation(DIC) coupled static and dynamic loads FLAW crack propagation
下载PDF
Testing Studies on Rock Failure Modes of Statically Loads Under Dynamic Loading 被引量:4
16
作者 叶洲元 李夕兵 +2 位作者 刘希灵 马春德 尹土兵 《Transactions of Tianjin University》 EI CAS 2008年第B10期530-535,共6页
By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course... By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests. 展开更多
关键词 Hopkinson combination of static and dynamic loads DAMAGE failure mode
下载PDF
Numerical simulation of dynamic fracture properties of rocks under different static stress conditions 被引量:6
17
作者 LIANG Zheng-zhao QIAN Xi-kun +1 位作者 ZHANG Ya-fang LIAO Zhi-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期624-644,共21页
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio... When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case. 展开更多
关键词 rock mechanics coupled static and dynamic loading numerical simulation rate-dependent damage constitutive model
下载PDF
A button switch inspired duplex hydrogel sensor based on both triboelectric and piezoresistive effects for detecting dynamic and static pressure 被引量:1
18
作者 Zhensheng Chen Jiahao Yu +4 位作者 Xiaoxi Zhang Haozhe Zeng Yunjia Li Jin Wu Kai Tao 《Nanotechnology and Precision Engineering》 CAS CSCD 2022年第2期12-20,共9页
The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces.In this paper,inspired by button switches,a duplex tactile sensor based on t... The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces.In this paper,inspired by button switches,a duplex tactile sensor based on the combination of triboelectric and piezoresistive effects is designed and fabricated.Because of its excellent mechanical strength and electrical stability,a double-networked ionic hydrogel is used as both the conductive electrode and elastic current regulator.In addition,micro-pyramidal patterned polydimethylsiloxane(PDMS)acts as both the friction layer and the encapsulation elastomer,thereby boosting the triboelectric output performance significantly.The duplex hydrogel sensor demonstrates comprehensive sensing ability in detecting the whole stimulation process including the dynamic and static pressures.The dynamic stress intensity(10–300 Pa),the action time,and the static variations(increase and decrease)of the pressure can be identified precisely from the dual-channel signals.Combined with a signal processing module,an intelligent visible door lamp is achieved for monitoring the entire“contact–hold–release–separation”state of the external stimulation,which shows great application potential for future smart robot e-skin and flexible electronics. 展开更多
关键词 Duplex hydrogel sensor Triboelectric nanogenerator Piezoresistive sensor dynamic and static sensing
下载PDF
Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core 被引量:3
19
作者 M.GRYGOROWICZ E.MAGNUCKA-BLANDZI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1361-1374,共14页
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ... The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables. 展开更多
关键词 mathematical modelling dynamic stability metal foam core with variable mechanical property static and dynamic equilibrium path angular frequency
下载PDF
Numerical experiment rock fragmentation by combined dynamic and static loads under dual-cutter head 被引量:4
20
作者 Zhao Fujun Wang Hongyu +2 位作者 Shen Peiwen Chen Caixian Xu Yanfei 《Engineering Sciences》 EI 2012年第2期56-60,共5页
This paper puts forward a new rock fragmentation loading method of dual-cutter head combined dynamic and static loads. By applying the numerical simulation software - RFPA2D, we have done numerical experiment about th... This paper puts forward a new rock fragmentation loading method of dual-cutter head combined dynamic and static loads. By applying the numerical simulation software - RFPA2D, we have done numerical experiment about the sihstone' s crushing effect by dynamic load on single cutter head without confining pressure, dynamic load on single cut- ter head with confining pressure 10 MPa and different dual-cutter heads spacing by combined dynamic and static loads with confining pressure 10 MPa. Experimental results show that the confining pressure can obviously affect the rock frag- mentation effect. Combined dynamic and static loads can greatly improve the rock fragmentation effect. There exists an optimal spacing of dual-cutter head that can make the rock fragmentation achieve the desired effect. Through analyzing the acoustic emission accumulative energy and quantity, the authors make a conclusion that the optimum spacing is 30 mm. 展开更多
关键词 coupled static and dynamic loads rock fragmentation average degree numerical experiment
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部